skip to main content

Title: Abundances of Uranium and Thorium Elements in Earth Estimated by Geoneutrino Spectroscopy

The decay of the primordial isotopes238U,235U,232Th, and40K has contributed to the terrestrial heat budget throughout the Earth's history. Hence, the individual abundance of those isotopes are key parameters in reconstructing contemporary Earth models. The geoneutrinos produced by the radioactive decays of uranium and thorium have been observed with the Kamioka Liquid‐Scintillator Antineutrino Detector (KamLAND). Those measurements have been improved with more than 18‐year observation time, and improvement in detector background levels mainly with an 8‐year nearly reactor‐free period, which now permit spectroscopy with geoneutrinos. Our results yield the first constraint on both uranium and thorium heat contributions. The KamLAND result is consistent with geochemical estimations based on elemental abundances of chondritic meteorites and mantle peridotites. The High‐Q model is disfavored at 99.76% C.L. and a fully radiogenic model is excluded at 5.2σassuming a homogeneous heat producing element distribution in the mantle.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;   « less
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Carbonaceous chondritic meteorites are primordial Solar System materials and a source of water delivery to Earth. Fluid flow on the parent bodies of these meteorites is known to have occurred very early in Solar System history (first <4 million years). We analyze short-lived uranium isotopes in carbonaceous chondrites, finding excesses of 234-uranium over 238-uranium and 238-uranium over 230-thorium. These indicate that the fluid-mobile uranium ion U6+moved within the past few 100,000 years. In some meteorites, this time scale is less than the cosmic-ray exposure age, which measures when they were ejected from their parent body into space. Fluid flow occurred after melting of ice, potentially by impact heating, solar heating, or atmospheric ablation. We favor the impact heating hypothesis, which implies that the parent bodies still contain ice.

    more » « less
  2. Abstract Observation of anti-neutrinos emitted from radioactive isotopes inside Earth(geo-neutrinos) brings direct information on the Earth’s chemical composition and its heat balance, which strongly relate to the Earth’s dynamics. To date, two experiments (KamLAND and Borexino) have measured geo-neutrinos and constrained the range of acceptable models for the Earth’s chemical composition, but distinguishing the mantle flux by land-based detectors is challenging as the crust signal is about 70% of the total anti-neutrino flux. Given the oceanic crust is thinner and has lower concentration of radioactive elements than continental crust, geo-neutrino detector in the ocean, Ocean Bottom Detector (OBD), makes it sensitive to geo-neutrinos originating from the Earth’s mantle. Our working group was jointly constructed from interdisciplinary communities in Japan which include particle physics, geoscience, and ocean engineering. We have started to work on technological developments of OBD. We are now developing a 20 kg prototype liquid scintillator detector. This detector will undergo operation deployment tests at 1 km depth seafloor in 2022. 
    more » « less
  3. Abstract

    The residence time of fluids circulating through deep‐sea hydrothermal systems influences the extent of water‐rock reactions and the flux of major and minor elements to the ocean. While the fluid residence times in numerous basaltic and gabbroic systems have been determined, those of the less studied ultramafic systems are currently unknown. Fluids that interact with mantle rocks have fundamentally different chemistries and therefore have unique influences on seawater chemistry. In this first investigation of radium isotopes in a serpentinite‐hosted system, vent fluids were discovered to contain 10–100 times greater activities of223Ra (half‐life = 11.4 days) than observed in high‐temperature basalt‐hosted systems. The223Ra activities of 10–109 dpm L−1produce223Ra/226Ra activity ratios ranging from 9 to 109. These extremely high223Ra activities, which are accompanied by low activities of226Ra, place significant constraints on fluid residence times and the adsorption coefficient of radium between fluid and rock. Our data constrain the nondimensional retardation factor (R) to very low values between 1 and 4, reflecting the extent to which Ra is transported more slowly than fluids due to adsorption and other processes. These results suggest that the residence time of fluids in contact with serpentinite is less than 2 y and perhaps as low as 0.5 y. They are surprisingly similar to those of basalt‐hosted systems. Thus, fluids in hydrothermal systems share similar hydrogeological characteristics despite differences in rock types, underlying porosity, and heat sources, enabling larger‐scale models of hydrothermal biogeochemistry to be developed across systems.

    more » « less
  4. Calcium silicate perovskite, CaSiO 3 , is arguably the most geochemically important phase in the lower mantle, because it concentrates elements that are incompatible in the upper mantle, including the heat-generating elements thorium and uranium, which have half-lives longer than the geologic history of Earth. We report CaSiO 3 -perovskite as an approved mineral (IMA2020-012a) with the name davemaoite. The natural specimen of davemaoite proves the existence of compositional heterogeneity within the lower mantle. Our observations indicate that davemaoite also hosts potassium in addition to uranium and thorium in its structure. Hence, the regional and global abundances of davemaoite influence the heat budget of the deep mantle, where the mineral is thermodynamically stable. 
    more » « less
  5. Abstract

    Uranium isotopes (238U/235U) have been used widely over the last decade as a global proxy for marine redox conditions. The largest isotopic fractionations in the system occur during U reduction, removal, and burial. Applying this basic framework, global U isotope mass balance models have been used to predict the extent of ocean floor anoxia during key intervals throughout Earth's history. However, there are currently minimal constraints on the isotopic fractionation that occurs during reduction and burial in anoxic and iron‐rich (ferruginous) aquatic systems, despite the consensus that ferruginous conditions are thought to have been widespread through the majority of our planet's history. Here we provide the first exploration of δ238U values in natural ferruginous settings. We measured δ238U in sediments from two modern ferruginous lakes (Brownie Lake and Lake Pavin), the water column of Brownie Lake, and sedimentary rocks from the Silurian‐Devonian boundary that were deposited under ferruginous conditions. Additionally, we provide new δ238U data from core top sediments from anoxic but nonsulfidic settings in the Peru Margin oxygen minimum zone. We find that δ238U values from sediments deposited in all of these localities are highly variable but on average are indistinguishable from adjacent oxic sediments. This forces a reevaluation of the global U isotope mass balance and how U isotope values are used to reconstruct the evolution of the marine redox landscape.

    more » « less