skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multiscale Textured Mesh Substrates that Glide Alcohol Droplets and Impede Ice Nucleation
Textured surfaces are commonly designed to preclude wetting by water. The design of surfaces that are not wetted by alcohols represents a considerable challenge given the low surface tension, viscosity, and density of these liquids. Herein, a hierarchically textured plastronic architecture that can suspend alcohol droplets in a metastable Cassie–Baxter regime is presented. As a result of microtexturation of the underlying stainless steel mesh, multiscale texturation derived from ZnO tetrapods, and surface functionalization with perfluorinated‐polyhedral oligomeric silsesquioxanes, the surfaces glide aliphatic alcohols, water, andn‐hexadecane. The design of surfaces not wetted by alcohols is particularly relevant to “point‐of‐care” environments. Because of the minimized interfacial contact areas, the textured surfaces further greatly inhibit ice nucleation at solid/liquid interfaces. High‐speed video imaging of the freezing and droplet impact shows that the textured surfaces delay ice nucleation by inhibiting heterogeneous nucleation, more effectively channel kinetic energy upon droplet impact to break up impinging droplets, and greatly limit frost formation. Once ice forms, its adhesion is substantially diminished by about three orders of magnitude as compared with planar substrates. The results demonstrate a scalable spray deposition method to generate surfaces for enabling the deterministic flow of liquids as well as inhibit ice formation.  more » « less
Award ID(s):
2122604
PAR ID:
10372174
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Engineering Materials
Volume:
24
Issue:
8
ISSN:
1438-1656
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Preventing water droplets from transitioning to ice is advantageous for numerous applications. It is demonstrated that the use of certain phase‐change materials, which are in liquid state under ambient conditions and have melting point higher than the freezing point of water, referred herein as phase‐switching liquids (PSLs), can impede condensation–frosting lasting up to 300 and 15 times longer in bulk and surface infused state, respectively, compared to conventional surfaces under identical environmental conditions. The freezing delay is primarily a consequence of the release of trapped latent heat due to condensation, but is also affected by the solidified PSL surface morphology and its miscibility in water. Regardless of surface chemistry, PSL‐infused textured surfaces exhibit low droplet adhesion when operated below the corresponding melting point of the solidified PSLs, engendering ice and frost repellency even on hydrophilic substrates. Additionally, solidified PSL surfaces display varying degrees of optical transparency, can repel a variety of liquids, and self‐heal upon physical damage. 
    more » « less
  2. Abstract Undesired heat transfer during droplet impact on cold surfaces can lead to ice formation and damage to renewable infrastructure, among others. To address this, superhydrophobic surfaces aim to minimize the droplet surface interaction thereby, holding promise to greatly limit heat transfer. However, the droplet impact on such surfaces spans only a few milliseconds making it difficult to quantify the heat exchange at the droplet–solid interface. Here, we employ high‐speed infrared thermography and a three‐dimensional transient heat conduction COMSOL model to map the dynamic heat flux distribution during droplet impact on a cold superhydrophobic surface. The comprehensive droplet impact experiments for varying surface temperature, droplet size, and impacting height reveal that the heat transfer effectiveness () scales with the dimensionless maximum spreading radius as , deviating from previous semi‐infinite scaling. Interestingly, despite shorter contact times, droplets impacting from higher heights demonstrate increased heat transfer effectiveness due to expanded contact area. The results suggest that reducing droplet spreading time, as opposed to contact time alone, can be a more effective strategy for minimizing heat transfer. The results presented here highlight the importance of both contact area and contact time on the heat exchange between a droplet and a cold superhydrophobic surface. 
    more » « less
  3. Heterogeneous ice nucleation in the atmosphere regulates cloud properties, such as phase (ice versus liquid) and lifetime. Aerosol particles of marine origin are relevant ice nucleating particle sources when marine aerosol layers are lifted over mountainous terrain and in higher latitude ocean boundary layers, distant from terrestrial aerosol sources. Among many particle compositions associated with ice nucleation by sea spray aerosols are highly saturated fatty acids. Previous studies have not demonstrated their ability to freeze dilute water droplets. This study investigates ice nucleation by monolayers at the surface of supercooled droplets and as crystalline particles at temperatures exceeding the threshold for homogeneous freezing. Results show the poor efficiency of long chain fatty acid (C16, C18) monolayers in templating freezing of pure water droplets and seawater subphase to temperatures of at least −30 °C, consistent with theory. This contrasts with freezing of fatty alcohols (C22 used here) at nearly 20 °C warmer. Evaporation of μL-sized droplets to promote structural compression of a C19 acid monolayer did not favor warmer ice formation of drops. Heterogeneous ice nucleation occurred for nL-sized droplets condensed on 5 to 100 μm crystalline particles of fatty acid (C12 to C20) at a range of temperatures below −28 °C. These experiments suggest that fatty acids nucleate ice at warmer than −36 °C only when the crystalline phase is present. Rough estimates of ice active site densities are consistent with those of marine aerosols, but require knowledge of the proportion of surface area comprised of fatty acids for application. 
    more » « less
  4. Abstract This study investigates the evolution of temperature and lifetime of evaporating, supercooled cloud droplets considering initial droplet radius (r0) and temperature (), and environmental relative humidity (RH), temperature (T), and pressure (P). The time (tss) required by droplets to reach a lower steady-state temperature (Tss) after sudden introduction into a new subsaturated environment, the magnitude of ΔT=T−Tss, and droplet survival time (tst) atTssare calculated. The temperature difference (ΔT) is found to increase withT, and decrease with RH andP. ΔTwas typically 1–5 K lower thanT, with highest values (∼10.3 K) for very low RH, lowP, andTcloser to 0°C. Results show thattssis <0.5 s over the range of initial droplet and environmental conditions considered. Larger droplets (r0= 30–50μm) can survive atTssfor about 5 s to over 10 min, depending on the subsaturation of the environment. For higher RH and larger droplets, droplet lifetimes can increase by more than 100 s compared to those with droplet cooling ignored.Tssof the evaporating droplets can be approximated by the environmental thermodynamic wet-bulb temperature. Radiation was found to play a minor role in influencing droplet temperatures, except for larger droplets in environments close to saturation. The implications for ice nucleation in cloud-top generating cells and near cloud edges are discussed. UsingTssinstead ofTin widely used parameterization schemes could lead to enhanced number concentrations of activated ice-nucleating particles (INPs), by a typical factor of 2–30, with the greatest increases (≥100) coincident with low RH, lowP, andTcloser to 0°C. Significance StatementCloud droplet temperature plays an important role in fundamental cloud processes like droplet growth and decay, activation of ice-nucleating particles, and determination of radiative parameters like refractive indices of water droplets. Near cloud boundaries such as cloud tops, dry air mixes with cloudy air exposing droplets to environments with low relative humidities. This study examines how the temperature of a cloud droplet that is supercooled (i.e., has an initial temperature < 0°C) evolves in these subsaturated environments. Results show that when supercooled cloud droplets evaporate near cloud boundaries, their temperatures can be several degrees Celsius lower than the surrounding drier environment. The implications of this additional cooling of droplets near cloud edges on ice particle formation are discussed. 
    more » « less
  5. Abstract Coalescence‐induced droplet jumping phenomena on superhydrophobic surfaces can significantly enhance their heat transfer performances by effectively removing droplets from the surfaces. However, understanding the ideal design for condensing surfaces is still challenging due to the complex nature of droplet dynamics associated with their nucleation, coalescing, and jumping mechanisms. The intrinsic dynamic nature of droplet behaviors suggests the use of hierarchical concave morphology to account for the different length scales associated with each transport phenomenon. The hierarchical morphology thereby enables heterogeneous wetting characteristics by realizing both microscale droplets on superhydrophobic surfaces and nanoscale pinning regions beneath the droplets by arresting liquid residues after droplet jumping. Heat transfer performances are further examined by extracting physically meaningful descriptors, such as nucleation sites, droplet growth rates, and droplet jumping frequency, showing 44% enhancements when droplet nucleation sites are designed in selective locations. 
    more » « less