The gill surface area of aquatic ectotherms is thought to be closely linked to the ontogenetic scaling of metabolic rate, a relationship that is often used to explain and predict ecological patterns across species. However, there are surprisingly few within-species tests of whether metabolic rate and gill area scale similarly. We examined the relationship between oxygen supply (gill area) and demand (metabolic rate) by making paired estimates of gill area with resting and maximum metabolic rates across ontogeny in the relatively inactive California horn shark, Heterodontus francisci. We found that the allometric slope of resting metabolic rate was 0.966±0.058 (±95% CI), whereas that of maximum metabolic rate was somewhat steeper (1.073±0.040). We also discovered that the scaling of gill area shifted with ontogeny: the allometric slope of gill area was shallower in individuals <0.203 kg in body mass (0.564±0.261), but increased to 1.012±0.113 later in life. This appears to reflect changes in demand for gill-oxygen uptake during egg case development and immediately post hatch, whereas for most of ontogeny, gill area scales in between that of resting and maximum metabolic rate. These relationships differ from predictions of the gill oxygen limitation theory, which argues that the allometric scaling of gill area constrains metabolic processes. Thus, for the California horn shark, metabolic rate does not appear limited by theoretical surface-area-to-volume ratio constraints of gill area. These results highlight the importance of data from paired and size-matched individuals when comparing physiological scaling relationships.
Larger animals studied during ontogeny, across populations, or across species, usually have lower mass-specific metabolic rates than smaller animals (hypometric scaling). This pattern is usually observed regardless of physiological state (e.g., basal, resting, field, and maximally active). The scaling of metabolism is usually highly correlated with the scaling of many life-history traits, behaviors, physiological variables, and cellular/molecular properties, making determination of the causation of this pattern challenging. For across-species comparisons of resting and locomoting animals (but less so for across populations or during ontogeny), the mechanisms at the physiological and cellular level are becoming clear. Lower mass-specific metabolic rates of larger species at rest are due to (a) lower contents of expensive tissues (brains, liver, and kidneys), and (b) slower ion leak across membranes at least partially due to membrane composition, with lower ion pump ATPase activities. Lower mass-specific costs of larger species during locomotion are due to lower costs for lower-frequency muscle activity, with slower myosin and Ca++ ATPase activities, and likely more elastic energy storage. The evolutionary explanation(s) for hypometric scaling remain(s) highly controversial. One subset of evolutionary hypotheses relies on constraints on larger animals due to changes in geometry with size; for example, lower surface-to-volume ratios of exchange surfaces may constrain nutrient or heat exchange, or lower cross-sectional areas of muscles and tendons relative to body mass ratios would make larger animals more fragile without compensation. Another subset of hypotheses suggests that hypometric scaling arises from biotic interactions and correlated selection, with larger animals experiencing less selection for mass-specific growth or neurolocomotor performance. An additional third type of explanation comes from population genetics. Larger animals with their lower effective population sizes and subsequent less effective selection relative to drift may have more deleterious mutations, reducing maximal performance and metabolic rates. Resolving the evolutionary explanation for the hypometric scaling of metabolism and associated variables is a major challenge for organismal and evolutionary biology. To aid progress, we identify some variation in terminology use that has impeded cross-field conversations on scaling. We also suggest that promising directions for the field to move forward include (1) studies examining the linkages between ontogenetic, population-level, and cross-species allometries; (2) studies linking scaling to ecological or phylogenetic context; (3) studies that consider multiple, possibly interacting hypotheses; and (4) obtaining better field data for metabolic rates and the life history correlates of metabolic rate such as lifespan, growth rate, and reproduction.
more » « less- NSF-PAR ID:
- 10372233
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Integrative and Comparative Biology
- ISSN:
- 1540-7063
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
Synopsis Understanding the effect of body size on flight costs is critical for the development of models of aerodynamics and animal energetics. Prior scaling studies that have shown that flight costs scale hypometrically have focused primarily on larger (>100 mg) insects and birds, but most flying species are smaller. We studied the flight physiology of 13 stingless bee species over a large range of body sizes (1–115 mg). Metabolic rate during hovering scaled hypermetrically (scaling slope = 2.11). Larger bees had warm thoraxes, while small bees were nearly ecothermic; however, even controlling for body temperature variation, flight metabolic rate scaled hypermetrically across this clade. Despite having a lower mass-specific metabolic rate during flight, smaller bees could carry the same proportional load. Wingbeat frequency did not vary with body size, in contrast to most studies that find wingbeat frequency increases as body size decreases. Smaller stingless bees have a greater relative forewing surface area, which may help them reduce the energy requirements needed to fly. Further, we hypothesize that the relatively larger heads of smaller species may change their body pitch in flight. Synthesizing across all flying insects, we demonstrate that the scaling of flight metabolic rate changes from hypermetric to hypometric at ∼58 mg body mass with hypermetic scaling below (slope = 1.2) and hypometric scaling (slope = 0.67) >58 mg in body mass. The reduced cost of flight likely provides selective advantages for the evolution of small body size in insects. The biphasic scaling of flight metabolic rates and wingbeat frequencies in insects supports the hypothesis that the scaling of metabolic rate is closely related to the power requirements of locomotion and cycle frequencies.
-
Abstract Reinvasion of the oceans beginning 10–60 million years ago by ancient mammals instigated one of the most remarkable metabolic transitions across evolutionary time. A consequence of marine living, especially in colder waters, has been a 1.4–2.9-fold increase in resting metabolic rate (RMR) for otters, pinnipeds, and cetaceans over predicted levels for terrestrial mammals of similar body mass. Notably, the greatest metabolic elevation occurred in the smallest marine mammals, suggesting an underlying thermal causative mechanism. Superimposed on these resting costs are the metabolic demands of locomotion. Collectively termed the field metabolic rate (FMR), such active costs consistently approach three times the resting rates of individuals regardless of locomotor style, species, foraging patterns, habitat, or geographic location. In wild non-reproducing mammals, the FMR/RMR ratio averages 2.6–2.8 for both terrestrial and marine species, with the latter group maintaining larger absolute daily metabolic rates supported by comparatively higher food ingestion rates. Interestingly, the limit for habitual (multi-day), sustained maximal energy expenditure in human endurance athletes averages <3.0 times resting metabolic levels, with a notable exception in Tour de France cyclists. Importantly, both athletes and wild mammals seem similarly constrained; that is, by the ability to process enough calories in a day to support exceptional metabolic performance.more » « less
-
Abstract Size at the start of life reflects the initial per offspring parental investment—including both the embryo and the nutrients supplied to it. Initial offspring size can vary substantially, both within and among species. Within species, increasing offspring size can enhance growth, reproduction, competitive ability, and reduce susceptibility to predation and starvation later in life, that can ultimately increase fitness. Previous work has suggested that the fitness benefits of larger offspring size may be driven by energy expenditure during development—or how offspring metabolic rate scales with offspring size. Despite the importance of early-life energy expenditure in shaping later life fitness trajectories, consideration of among-species scaling of metabolic rate at the time of birth as a potential source of general metabolic scaling patterns has been overlooked by theory. Here, we review the patterns and processes of energy expenditure at the start of life when mortality is often greatest. We compile existing data on metabolic rate and offspring size for 191 ectotherm species spanning eight phyla and use phylogenetically controlled methods to quantify among-species scaling patterns. Across a 109-fold mass range, we find that offspring metabolic rate scales hypometrically with size, with an overall scaling exponent of 0.66. This exponent varies across ontogenetic stage and feeding activity, but is consistently hypometric, including across environmental temperatures. Despite differences in parental investment, life history and habitat, large-offspring species use relatively less energy as a proportion of size, compared with small-offspring species. Greater residual energy can be used to fuel the next stages of life, particularly in low-resource environments. Based on available evidence, we conclude that, while large knowledge gaps remain, the evolution of offspring size is likely shaped by context-dependent selection acting on correlated traits, including metabolic rates maintaining hypometric scaling, which operates within broader physical constraints.more » « less
-
Abstract Environmental warming is associated with reductions in ectotherm body sizes, suggesting that larger individuals may be more vulnerable to climate change. The mechanisms driving size-specific vulnerability to temperature are unknown but are required to finetune predictions of fisheries productivity and size-structure community responses to climate change. We explored the potential metabolic and cardiac mechanisms underlying these body size vulnerability trends in a eurythermal fish, barred surfperch. We acutely exposed surfperch across a large size range (5–700 g) to four ecologically relevant temperatures (16 °C, 12 °C, 20 °C, and 22 °C) and subsequently, measured their metabolic capacity (absolute and factorial aerobic scopes, maximum and resting metabolic rates; AAS, FAS, MMR, RMR). Additionally, we estimated the fish’s cardiac thermal tolerance by measuring their maximum heart rates (
f Hmax) across acutely increasing temperatures. Barred surfperch had parallel hypoallometric scaling of MMR and RMR (exponent 0.81) and a weaker hypoallometric scaling off Hmax(exponent − 0.05) across all test temperatures. In contrast to our predictions, the fish’s aerobic capacity was maintained across sizes and acute temperatures, and larger fish had greater cardiac thermal tolerance than smaller fish. These results demonstrate that thermal performance may be limited by different physiological constraints depending on the size of the animal and species of interest.