skip to main content

Title: General rogue waves in the three-wave resonant interaction systems
Abstract General rogue waves in (1+1)-dimensional three-wave resonant interaction systems are derived by the bilinear method. These solutions are divided into three families, which correspond to a simple root, two simple roots and a double root of a certain quartic equation arising from the dimension reduction, respectively. It is shown that while the first family of solutions associated with a simple root exists for all signs of the nonlinear coefficients in the three-wave interaction equations, the other two families of solutions associated with two simple roots and a double root can only exist in the so-called soliton-exchange case, where the nonlinear coefficients have certain signs. Many of these rogue wave solutions, such as those associated with two simple roots, the ones generated by a $2\times 2$ block determinant in the double-root case, and higher-order solutions associated with a simple root, are new solutions which have not been reported before. Technically, our bilinear derivation of rogue waves for the double-root case is achieved by a generalization to the previous dimension reduction procedure in the bilinear method, and this generalized procedure allows us to treat roots of arbitrary multiplicities. Dynamics of the derived rogue waves is also examined, and new rogue wave patterns are presented. Connection between these bilinear rogue waves and those derived earlier by Darboux transformation is also explained.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
IMA Journal of Applied Mathematics
Page Range / eLocation ID:
378 to 425
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In this paper, general rogue wave solutions in the massive Thirring (MT) model are derived by using the Kadomtsev–Petviashvili (KP) hierarchy reduction method and these rational solutions are presented explicitly in terms of determinants whose matrix elements are elementary Schur polynomials. In the reduction process, three reduction conditions including one index‐ and two dimension‐ones are proved to be consistent by only one constraint relation on parameters of tau‐functions of the KP‐Toda hierarchy. It is found that the rogue wave solutions in the MT model depend on two background parameters, which influence their orientation and duration. Differing from many other coupled integrable systems, the MT model only admits the rogue waves of bright‐type, and the higher order rogue waves represent the superposition of fundamental ones in which the nonreducible parameters determine the arrangement patterns of fundamental rogue waves. Particularly, the super rogue wave at each order can be achieved simply by setting all internal parameters to be zero, resulting in the amplitude of the sole huge peak of orderNbeing times the background. Finally, rogue wave patterns are discussed when one of the internal parameters is large. Similar to other integrable equations, the patterns are shown to be associated with the root structures of the Yablonskii–Vorob'ev polynomial hierarchy through a linear transformation.

    more » « less
  2. Abstract Up to the third-order rogue wave solutions of the Sasa–Satsuma (SS) equation are derived based on the Hirota’s bilinear method and Kadomtsev–Petviashvili hierarchy reduction method. They are expressed explicitly by rational functions with both the numerator and denominator being the determinants of even order. Four types of intrinsic structures are recognized according to the number of zero-amplitude points. The first- and second-order rogue wave solutions agree with the solutions obtained so far by the Darboux transformation. In spite of the very complicated solution form compared with the ones of many other integrable equations, the third-order rogue waves exhibit two configurations: either a triangle or a distorted pentagon. Both the types and configurations of the third-order rogue waves are determined by different choices of free parameters. As the nonlinear Schrödinger equation is a limiting case of the SS equation, it is shown that the degeneration of the first-order rogue wave of the SS equation converges to the Peregrine soliton. 
    more » « less
  3. Abstract

    We show that new types of rogue wave patterns exist in integrable systems, and these rogue patterns are described by root structures of Okamoto polynomial hierarchies. These rogue patterns arise when the τ functions of rogue wave solutions are determinants of Schur polynomials with index jumps of three, and an internal free parameter in these rogue waves gets large. We demonstrate these new rogue patterns in the Manakov system and the three‐wave resonant interaction system. For each system, we derive asymptotic predictions of its rogue patterns under a large internal parameter through Okamoto polynomial hierarchies. Unlike the previously reported rogue patterns associated with the Yablonskii–Vorob'ev hierarchy, a new feature in the present rogue patterns is that the mapping from the root structure of Okamoto‐hierarchy polynomials to the shape of the rogue pattern is linear only to the leading order, but becomes nonlinear to the next order. As a consequence, the current rogue patterns are often deformed, sometimes strongly deformed, from Okamoto‐hierarchy root structures, unless the underlying internal parameter is very large. Our analytical predictions of rogue patterns are compared to true solutions, and excellent agreement is observed, even when rogue patterns are strongly deformed from Okamoto‐hierarchy root structures.

    more » « less
  4. We present a comprehensive study of stationary states in a coherent medium with a quadratic or Kerr nonlinearity in the presence of localized potentials in one dimension for both positive and negative signs of the nonlinear term as well as for barriers and wells. The description is in terms of the nonlinear Schrödinger equation and hence applicable to a variety of systems, including interacting ultracold atoms in the mean field regime and light propagation in optical fibers. We determine the full landscape of solutions in terms of a potential step and build solutions for rectangular barrier and well potentials. It is shown that all the solutions can be expressed in terms of a Jacobi elliptic function with the inclusion of a complex-valued phase shift. Our solution method relies on the roots of a cubic polynomial associated with a hydrodynamic picture, which provides a simple classification of all the solutions, both bounded and unbounded, while the boundary conditions are intuitively visualized as intersections of phase space curves. We compare solutions for open boundary conditions with those for a barrier potential on a ring, and also show that numerically computed solutions for smooth barriers agree qualitatively with analytical solutions for rectangular barriers. A stability analysis of solutions based on the Bogoliubov equations for fluctuations shows that persistent instabilities are localized at sharp boundaries and are predicated by the relation of the mean density change across the boundary to the value of the derivative of the density at the edge. We examine the scattering of a wave packet by a barrier potential and show that at any instant the scattered states are well described by the stationary solutions we obtain, indicating applications of our results and methods to nonlinear scattering problems. 
    more » « less
  5. General breather solution to the Sasa–Satsuma equation (SSE) is systematically investigated in this paper. We firstly transform the SSE into a set of three Hirota bilinear equations under a proper plane wave boundary condition. Starting from a specially arranged tau-function of the Kadomtsev–Petviashvili hierarchy and a set of 11 bilinear equations satisfied, we implement a series steps of reduction procedure, i.e. C-type reduction, dimension reduction and complex conjugate reduction, and reduce these 11 equations to three bilinear equations for the SSE. Meanwhile, the general breather solution to the SSE is found in determinant of even order. The one- and two-breather solutions are calculated and analysed in detail. 
    more » « less