- Award ID(s):
- 1910282
- PAR ID:
- 10253053
- Date Published:
- Journal Name:
- IMA Journal of Applied Mathematics
- Volume:
- 86
- Issue:
- 2
- ISSN:
- 0272-4960
- Page Range / eLocation ID:
- 378 to 425
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Up to the third-order rogue wave solutions of the Sasa–Satsuma (SS) equation are derived based on the Hirota’s bilinear method and Kadomtsev–Petviashvili hierarchy reduction method. They are expressed explicitly by rational functions with both the numerator and denominator being the determinants of even order. Four types of intrinsic structures are recognized according to the number of zero-amplitude points. The first- and second-order rogue wave solutions agree with the solutions obtained so far by the Darboux transformation. In spite of the very complicated solution form compared with the ones of many other integrable equations, the third-order rogue waves exhibit two configurations: either a triangle or a distorted pentagon. Both the types and configurations of the third-order rogue waves are determined by different choices of free parameters. As the nonlinear Schrödinger equation is a limiting case of the SS equation, it is shown that the degeneration of the first-order rogue wave of the SS equation converges to the Peregrine soliton.more » « less
-
Abstract In this paper, general rogue wave solutions in the massive Thirring (MT) model are derived by using the Kadomtsev–Petviashvili (KP) hierarchy reduction method and these rational solutions are presented explicitly in terms of determinants whose matrix elements are elementary Schur polynomials. In the reduction process, three reduction conditions including one index‐ and two dimension‐ones are proved to be consistent by only one constraint relation on parameters of tau‐functions of the KP‐Toda hierarchy. It is found that the rogue wave solutions in the MT model depend on two background parameters, which influence their orientation and duration. Differing from many other coupled integrable systems, the MT model only admits the rogue waves of bright‐type, and the higher order rogue waves represent the superposition of fundamental ones in which the nonreducible parameters determine the arrangement patterns of fundamental rogue waves. Particularly, the super rogue wave at each order can be achieved simply by setting all internal parameters to be zero, resulting in the amplitude of the sole huge peak of order
N being times the background. Finally, rogue wave patterns are discussed when one of the internal parameters is large. Similar to other integrable equations, the patterns are shown to be associated with the root structures of the Yablonskii–Vorob'ev polynomial hierarchy through a linear transformation. -
Abstract We show that new types of rogue wave patterns exist in integrable systems, and these rogue patterns are described by root structures of Okamoto polynomial hierarchies. These rogue patterns arise when the τ functions of rogue wave solutions are determinants of Schur polynomials with index jumps of three, and an internal free parameter in these rogue waves gets large. We demonstrate these new rogue patterns in the Manakov system and the three‐wave resonant interaction system. For each system, we derive asymptotic predictions of its rogue patterns under a large internal parameter through Okamoto polynomial hierarchies. Unlike the previously reported rogue patterns associated with the Yablonskii–Vorob'ev hierarchy, a new feature in the present rogue patterns is that the mapping from the root structure of Okamoto‐hierarchy polynomials to the shape of the rogue pattern is linear only to the leading order, but becomes nonlinear to the next order. As a consequence, the current rogue patterns are often deformed, sometimes strongly deformed, from Okamoto‐hierarchy root structures, unless the underlying internal parameter is very large. Our analytical predictions of rogue patterns are compared to true solutions, and excellent agreement is observed, even when rogue patterns are strongly deformed from Okamoto‐hierarchy root structures.
-
We report new rogue wave patterns in the nonlinear Schrödinger equation. These patterns include heart-shaped structures, fan-shaped sectors, and many others, that are formed by individual Peregrine waves. They appear when multiple internal parameters in the rogue wave solutions get large. Analytically, we show that these new patterns are described asymptotically by root structures of Adler–Moser polynomials through a dilation. Since Adler–Moser polynomials are generalizations of the Yablonskii–Vorob’ev polynomial hierarchy and contain free complex parameters, these new rogue patterns associated with Adler–Moser polynomials are much more diverse than previous rogue patterns associated with the Yablonskii–Vorob’ev polynomial hierarchy. We also compare analytical predictions of these patterns to true solutions and demonstrate good agreement between them.more » « less
-
General breather solution to the Sasa–Satsuma equation (SSE) is systematically investigated in this paper. We firstly transform the SSE into a set of three Hirota bilinear equations under a proper plane wave boundary condition. Starting from a specially arranged tau-function of the Kadomtsev–Petviashvili hierarchy and a set of 11 bilinear equations satisfied, we implement a series steps of reduction procedure, i.e. C-type reduction, dimension reduction and complex conjugate reduction, and reduce these 11 equations to three bilinear equations for the SSE. Meanwhile, the general breather solution to the SSE is found in determinant of even order. The one- and two-breather solutions are calculated and analysed in detail.more » « less