Abstract In this paper, we develop the Riemann–Hilbert approach to the inverse scattering transform (IST) for the complex coupled short‐pulse equation on the line with zero boundary conditions at space infinity, which is a generalization of recent work on the scalar real short‐pulse equation (SPE) and complex short‐pulse equation (cSPE). As a byproduct of the IST, soliton solutions are also obtained. As is often the case, the zoology of soliton solutions for the coupled system is richer than in the scalar case, and it includes both fundamental solitons (the natural, vector generalization of the scalar case), and fundamental breathers (a superposition of orthogonally polarized fundamental solitons, with the same amplitude and velocity but having different carrier frequencies), as well as composite breathers, which still correspond to a minimal set of discrete eigenvalues but cannot be reduced to a simple superposition of fundamental solitons. Moreover, it is found that the same constraint on the discrete eigenvalues which leads to regular, smooth one‐soliton solutions in the complex SPE, also holds in the coupled case, for both a single fundamental soliton and a single fundamental breather, but not, in general, in the case of a composite breather. 
                        more » 
                        « less   
                    
                            
                            A focusing and defocusing semi-discrete complex short-pulse equation and its various soliton solutions
                        
                    
    
            In this paper, we are concerned with a semi-discrete complex short-pulse (sdCSP) equation of both focusing and defocusing types, which can be viewed as an analogue to the Ablowitz–Ladik lattice in the ultra-short-pulse regime. By using a generalized Darboux transformation method, various soliton solutions to this newly integrable semi-discrete equation are studied with both zero and non-zero boundary conditions. To be specific, for the focusing sdCSP equation, the multi-bright solution (zero boundary conditions), multi-breather and high-order rogue wave solutions (non-zero boundary conditions) are derived, while for the defocusing sdCSP equation with non-zero boundary conditions, the multi-dark soliton solution is constructed. We further show that, in the continuous limit, all the solutions obtained converge to the ones for its original CSP equation (Ling et al . 2016 Physica D 327 , 13–29 ( doi:10.1016/j.physd.2016.03.012 ); Feng et al . 2016 Phys. Rev. E 93 , 052227 ( doi:10.1103/PhysRevE.93.052227 )). 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1715991
- PAR ID:
- 10374228
- Date Published:
- Journal Name:
- Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
- Volume:
- 477
- Issue:
- 2247
- ISSN:
- 1364-5021
- Page Range / eLocation ID:
- 20200853
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We write down and characterize a large class of nonsingular multi-soliton solutions of the defocusing Davey–Stewartson II equation. In particular we study their asymptotics at space infinities as well as their interaction patterns in the xy -plane, and we identify several subclasses of solutions. Many of these solutions describe phenomena of soliton resonance and web structure. We identify a subclass of solutions that is the analogue of the soliton solutions of the Kadomtsev–Petviashvili II equation. In addition to this subclass, however, we show that more general solutions exist, describing phenomena that have no counterpart in the Kadomtsev–Petviashvili equation, including V-shape solutions and soliton reconnection.more » « less
- 
            We study fundamental rogue-wave solutions of the focusing nonlinear Schr\"odinger equation in the limit that the order of the rogue wave is large and the independent variables $(x,t)$ are proportional to the order (the far-field limit). We first formulate a Riemann-Hilbert representation of these solutions that allows the order to vary continuously rather than by integer increments. The intermediate solutions in this continuous family include also soliton solutions for zero boundary conditions spectrally encoded by a single complex-conjugate pair of poles of arbitrary order, as well as other solutions having nonzero boundary conditions matching those of the rogue waves albeit with far slower decay as $$x\to\pm\infty$$. The large-order far-field asymptotic behavior of the solution depends on which of three disjoint regions $$\mathcal{C}$$ (the ``channels''), $$\mathcal{S}$$ (the ``shelves''), and $$\mathcal{E}$$(the ``exterior domain'') contains the rescaled variables. On the region \mathcal{C}, the amplitude is small and the solution is highly oscillatory, while on the region \mathcal{S}, the solution is approximated by a modulated plane wave with a highly oscillatory correction term. The asymptotic behavior on these two domains is the same for all continuous orders. Assuming that the order belongs to the discrete sequence characteristic of rogue-wave solutions, the asymptotic behavior of the solution on the region $$\exterior$$ resembles that on \mathcal{S} but without the oscillatory correction term. Solutions of other continuous orders behave quite differently on $$\mathcal{E}$$.more » « less
- 
            Resonant Y-shaped soliton solutions to the Kadomtsev–Petviashvili II (KPII) equation are modelled as shock solutions to an infinite family of modulation conservation laws. The fully two-dimensional soliton modulation equations, valid in the zero dispersion limit of the KPII equation, are demonstrated to reduce to a one-dimensional system. In this same limit, the rapid transition from the larger Y soliton stem to the two smaller legs limits to a travelling discontinuity. This discontinuity is a multivalued, weak solution satisfying modified Rankine–Hugoniot jump conditions for the one-dimensional modulation equations. These results are applied to analytically describe the dynamics of the Mach reflection problem, V-shaped initial conditions that correspond to a soliton incident upon an inward oblique corner. Modulation theory results show excellent agreement with direct KPII numerical simulation.more » « less
- 
            Abstract We characterize initial value problems for the defocusing Manakov system (coupled two-component nonlinear Schrödinger equation) with nonzero background and well-defined spatial parity symmetry (i.e., when each of the components of the solution is either even or odd), corresponding to boundary value problems on the half line with Dirichlet or Neumann boundary conditions at the origin. We identify the symmetries of the eigenfunctions arising from the spatial parity of the solution, and we determine the corresponding symmetries of the scattering data (reflection coefficients, discrete spectrum and norming constants). All parity induced symmetries are found to be more complicated than in the scalar (i.e., one-component) case. In particular, we show that the discrete eigenvalues giving rise to dark solitons arise in symmetric quartets, and those giving rise to dark–bright solitons in symmetric octets. We also characterize the differences between the purely even or purely odd case (in which both components are either even or odd functions of x ) and the ‘mixed parity’ cases (in which one component is even while the other is odd). Finally, we show how, in each case, the spatial symmetry yields a constraint on the possible existence of self-symmetric eigenvalues, corresponding to stationary solitons, and we study the resulting behavior of solutions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    