skip to main content

Title: A follow-up on intermediate-mass black hole candidates in the second LIGO–Virgo observing run with the Bayes Coherence Ratio

The detection of an intermediate-mass black hole population (102–106 M⊙) will provide clues to their formation environments (e.g. discs of active galactic nuclei, globular clusters) and illuminate a potential pathway to produce supermassive black holes. Ground-based gravitational-wave detectors are sensitive to mergers that can form intermediate-mass black holes weighing up to ∼450 M⊙. However, ground-based detector data contain numerous incoherent short duration noise transients that can mimic the gravitational-wave signals from merging intermediate-mass black holes, limiting the sensitivity of searches. Here, we follow-up on binary black hole merger candidates using a ranking statistic that measures the coherence or incoherence of triggers in multiple-detector data. We use this statistic to rank candidate events, initially identified by all-sky search pipelines, with lab-frame total masses ≳ 55 M⊙ using data from LIGO’s second observing run. Our analysis does not yield evidence for new intermediate-mass black holes. However, we find support for eight stellar-mass binary black holes not reported in the first LIGO–Virgo gravitational wave transient catalogue GWTC-1, seven of which have been previously reported by other catalogues.

; ; ; ; ; ; ; ; ;
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
p. 5309-5317
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The existence of primordial black holes (PBHs), which may form from the collapse of matter overdensities shortly after the Big Bang, is still under debate. Among the potential signatures of PBHs are gravitational waves (GWs) emitted from binary black hole (BBH) mergers at redshiftsz≳ 30, where the formation of astrophysical black holes is unlikely. Future ground-based GW detectors, the Cosmic Explorer and Einstein Telescope, will be able to observe equal-mass BBH mergers with total mass of(10100)Mat such distances. In this work, we investigate whether the redshift measurement of a single BBH source can be precise enough to establish its primordial origin. We simulate BBHs of different masses, mass ratios and orbital orientations. We show that for BBHs with total masses between 20Mand 40Mmerging atz≥ 40, one can inferz> 30 at up to 97% credibility, with a network of one Einstein Telescope, one 40 km Cosmic Explorer in the US, and one 20 km Cosmic Explorer in Australia. This number reduces to 94% with a smaller network made of one Einstein Telescope and one 40 km Cosmic Explorer in the US. We also analyze how the measurement depends on the Bayesian priors usedmore »in the analysis and verify that priors that strongly favor the wrong model yield smaller Bayesian evidences.

    « less
  2. Abstract

    The core collapse of rapidly rotating massive ∼ 10Mstars (“collapsars”), and the resulting formation of hyperaccreting black holes, comprise a leading model for the central engines of long-duration gamma-ray bursts (GRBs) and promising sources ofr-process nucleosynthesis. Here, we explore the signatures of collapsars from progenitors with helium cores ≳ 130Mabove the pair-instability mass gap. While the rapid collapse to a black hole likely precludes prompt explosions in these systems, we demonstrate that disk outflows can generate a large quantity (up to ≳ 50M) of ejecta, comprised of ≳ 5–10Minr-process elements and ∼ 0.1–1Mof56Ni, expanding at velocities ∼0.1 c. Radioactive heating of the disk wind ejecta powers an optical/IR transient, with a characteristic luminosity ∼ 1042erg s−1and a spectral peak in the near-IR (due to the high optical/UV opacities of lanthanide elements), similar to kilonovae from neutron star mergers, but with longer durations ≳1 month. These “super-kilonovae” (superKNe) herald the birth of massive black holes ≳ 60M, which—as a result of disk wind mass loss—can populate the pair-instability mass gap “from above,” and could potentially create the binary components of GW190521. SuperKNe could be discovered via wide-field surveys, such as those planned with the Roman Space Telescope, or via late-timemore »IR follow-up observations of extremely energetic GRBs. Multiband gravitational waves of ∼ 0.1–50 Hz from nonaxisymmetric instabilities in self-gravitating massive collapsar disks are potentially detectable by proposed observatories out to hundreds of Mpc; in contrast to the “chirp” from binary mergers, the collapsar gravitational-wave signal decreases in frequency as the disk radius grows (“sad trombone”).

    « less

    Neutron star–black hole (NSBH) mergers detected in gravitational waves have the potential to shed light on supernova physics, the dense matter equation of state, and the astrophysical processes that power their potential electromagnetic counterparts. We use the population of four candidate NSBH events detected in gravitational waves so far with a false alarm rate ≤1 yr−1 to constrain the mass and spin distributions and multimessenger prospects of these systems. We find that the black holes in NSBHs are both less massive and have smaller dimensionless spins than those in black hole binaries. We also find evidence for a mass gap between the most massive neutron stars and least massive black holes in NSBHs at 98.6-per cent credibility. Using an approach driven by gravitational-wave data rather than binary simulations, we find that fewer than 14 per cent of NSBH mergers detectable in gravitational waves will have an electromagnetic counterpart. While the inferred presence of a mass gap and fraction of sources with a counterpart depend on the event selection and prior knowledge of source classification, the conclusion that the black holes in NSBHs have lower masses and smaller spin parameters than those in black hole binaries is robust. Finally, we propose a method for themore »multimessenger analysis of NSBH mergers based on the non-detection of an electromagnetic counterpart and conclude that, even in the most optimistic case, the constraints on the neutron star equation of state that can be obtained with multimessenger NSBH detections are not competitive with those from gravitational-wave measurements of tides in binary neutron star mergers and radio and X-ray pulsar observations.

    « less
  4. Abstract

    Ground-based gravitational-wave detectors like Cosmic Explorer (CE) can be tuned to improve their sensitivity at high or low frequencies by tuning the response of the signal extraction cavity. Enhanced sensitivity above 2 kHz enables measurements of the post-merger gravitational-wave spectrum from binary neutron star mergers, which depends critically on the unknown equation of state of hot, ultra-dense matter. Improved sensitivity below 500 Hz favors precision tests of extreme gravity with black hole ringdown signals and improves the detection prospects while facilitating an improved measurement of source properties for compact binary inspirals at cosmological distances. At intermediate frequencies, a more sensitive detector can better measure the tidal properties of neutron stars. We present and characterize the performance of tuned CE configurations that are designed to optimize detections across different astrophysical source populations. These tuning options give CE the flexibility to target a diverse set of science goals with the same detector infrastructure. We find that a 40 km CE detector outperforms a 20 km in all key science goals other than access to post-merger physics. This suggests that CE should include at least one 40 km facility.

  5. Abstract

    We present the analysis of five black hole candidates identified from gravitational microlensing surveys. Hubble Space Telescope astrometric data and densely sampled light curves from ground-based microlensing surveys are fit with a single-source, single-lens microlensing model in order to measure the mass and luminosity of each lens and determine if it is a black hole. One of the five targets (OGLE-2011-BLG-0462/MOA-2011-BLG-191 or OB110462 for short) shows a significant >1 mas coherent astrometric shift, little to no lens flux, and has an inferred lens mass of 1.6–4.4M. This makes OB110462 the first definitive discovery of a compact object through astrometric microlensing and it is most likely either a neutron star or a low-mass black hole. This compact-object lens is relatively nearby (0.70–1.92 kpc) and has a slow transverse motion of <30 km s−1. OB110462 shows significant tension between models well fit to photometry versus astrometry, making it currently difficult to distinguish between a neutron star and a black hole. Additional observations and modeling with more complex system geometries, such as binary sources, are needed to resolve the puzzling nature of this object. For the remaining four candidates, the lens masses are <2M, and they are unlikely to be black holes;more »two of the four are likely white dwarfs or neutron stars. We compare the full sample of five candidates to theoretical expectations on the number of black holes in the Milky Way (∼108) and find reasonable agreement given the small sample size.

    « less