Abstract Over a hundred gravitational-wave (GW) detections and candidates have been reported from the first three observing runs of the Advanced LIGO-Virgo-KAGRA (LVK) detectors. Among these, the most intriguing events are binary black hole mergers that result in a “lite” intermediate-mass black hole (IMBH) of ∼102M⊙, such as GW170502 and GW190521. In this study, we investigate 11 GW candidates from LVK’s third observing run with total detector-frame masses in the lite IMBH range. Using the Bayesian inference algorithmRIFT, we systematically analyze these candidates with three state-of-the-art waveform models that incorporate higher harmonics, which are crucial for resolving lite IMBHs in LVK data. For each candidate, we infer the premerger and postmerger black hole masses in the source frame, along with black hole spin projections across all three models. Under the assumption that these are binary black hole mergers, our analysis finds that five have a postmerger lite IMBH with masses ranging from 110 to 350M⊙with over 90% confidence interval. Additionally, we note that one of their premerger black holes is within the pair-instability supernova mass gap (60–120M⊙), and two premerger black holes are above the mass gap. Furthermore, we report discrepancies among the three waveform models in intrinsic parameters, with at least three GW candidates showing deviations beyond accepted statistical limits. While the astrophysical certainty of these candidates cannot be established, our study provides a foundation to probe the lite IMBH population that emerge within the low-frequency noise spectrum of LVK detectors. 
                        more » 
                        « less   
                    
                            
                            A follow-up on intermediate-mass black hole candidates in the second LIGO–Virgo observing run with the Bayes Coherence Ratio
                        
                    
    
            ABSTRACT The detection of an intermediate-mass black hole population (102–106 M⊙) will provide clues to their formation environments (e.g. discs of active galactic nuclei, globular clusters) and illuminate a potential pathway to produce supermassive black holes. Ground-based gravitational-wave detectors are sensitive to mergers that can form intermediate-mass black holes weighing up to ∼450 M⊙. However, ground-based detector data contain numerous incoherent short duration noise transients that can mimic the gravitational-wave signals from merging intermediate-mass black holes, limiting the sensitivity of searches. Here, we follow-up on binary black hole merger candidates using a ranking statistic that measures the coherence or incoherence of triggers in multiple-detector data. We use this statistic to rank candidate events, initially identified by all-sky search pipelines, with lab-frame total masses ≳ 55 M⊙ using data from LIGO’s second observing run. Our analysis does not yield evidence for new intermediate-mass black holes. However, we find support for eight stellar-mass binary black holes not reported in the first LIGO–Virgo gravitational wave transient catalogue GWTC-1, seven of which have been previously reported by other catalogues. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1912594
- PAR ID:
- 10372262
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 516
- Issue:
- 4
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- p. 5309-5317
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Since 2015 the gravitational-wave observations of LIGO and Virgo have transformed our understanding of compact-object binaries. In the years to come, ground-based gravitational-wave observatories such as LIGO, Virgo, and their successors will increase in sensitivity, discovering thousands of stellar-mass binaries. In the 2030s, the space-based LISA will provide gravitational-wave observations of massive black holes binaries. Between the $$\sim 10$$ ∼ 10 –10 3 Hz band of ground-based observatories and the $$\sim 10^{-4}$$ ∼ 1 0 − 4 –10 − 1 Hz band of LISA lies the uncharted decihertz gravitational-wave band. We propose a Decihertz Observatory to study this frequency range, and to complement observations made by other detectors. Decihertz observatories are well suited to observation of intermediate-mass ( $$\sim 10^{2}$$ ∼ 1 0 2 –10 4 M ⊙ ) black holes; they will be able to detect stellar-mass binaries days to years before they merge, providing early warning of nearby binary neutron star mergers and measurements of the eccentricity of binary black holes, and they will enable new tests of general relativity and the Standard Model of particle physics. Here we summarise how a Decihertz Observatory could provide unique insights into how black holes form and evolve across cosmic time, improve prospects for both multimessenger astronomy and multiband gravitational-wave astronomy, and enable new probes of gravity, particle physics and cosmology.more » « less
- 
            Abstract We report the observation of a coalescing compact binary with component masses 2.5–4.5M⊙and 1.2–2.0M⊙(all measurements quoted at the 90% credible level). The gravitational-wave signal GW230529_181500 was observed during the fourth observing run of the LIGO–Virgo–KAGRA detector network on 2023 May 29 by the LIGO Livingston observatory. The primary component of the source has a mass less than 5M⊙at 99% credibility. We cannot definitively determine from gravitational-wave data alone whether either component of the source is a neutron star or a black hole. However, given existing estimates of the maximum neutron star mass, we find the most probable interpretation of the source to be the coalescence of a neutron star with a black hole that has a mass between the most massive neutron stars and the least massive black holes observed in the Galaxy. We provisionally estimate a merger rate density of for compact binary coalescences with properties similar to the source of GW230529_181500; assuming that the source is a neutron star–black hole merger, GW230529_181500-like sources may make up the majority of neutron star–black hole coalescences. The discovery of this system implies an increase in the expected rate of neutron star–black hole mergers with electromagnetic counterparts and provides further evidence for compact objects existing within the purported lower mass gap.more » « less
- 
            ABSTRACT Galactic nuclei are potential hosts for intermediate-mass black holes (IMBHs), whose gravitational field can affect the motion of stars and compact objects. The absence of observable perturbations in our own Galactic Centre has resulted in a few constraints on the mass and orbit of a putative IMBH. Here, we show that the Laser Interferometer Space Antenna (LISA) can further constrain these parameters if the IMBH forms a binary with a compact remnant (a white dwarf, a neutron star, or a stellar-mass black hole), as the gravitational-wave signal from the binary will exhibit Doppler-shift variations as it orbits around Sgr A*. We argue that this method is the most effective for IMBHs with masses $$10^3\, \mathrm{ M}_\odot \lesssim M_{\rm IMBH}\lesssim 10^5\, \mathrm{ M}_\odot$$ and distances of 0.1–2 mpc with respect to the supermassive black hole, a region of the parameter space partially unconstrained by other methods. We show that in this region the Doppler shift is most likely measurable whenever the binary is detected in the LISA band, and it can help constrain the mass and orbit of a putative IMBH in the centre of our Galaxy. We also discuss possible ways for an IMBH to form a binary in the Galactic Centre, showing that gravitational-wave captures of stellar-mass black holes and neutron stars are the most efficient channel.more » « less
- 
            This dataset contains the compact binary populations that were used in the Cosmic Explorer MPSAC White paper1 (submitted to the NSF MPSAC ngGW Subcommittee) and the accompanying technical paper2. Contents: 1. 1-year populations for binary black hole (BBH), binary neutron star (BNS), neutron star-black hole (NSBH), intermediate mass binary black hole (IMBBH), Population III (Pop 3) binary black holes and primordial black hole (PBH) mergers. It also contains the SNRs and measurement errors on intrinsic and extrinsic parameters calculated using gwbench3. 2. 1/4-year sub-population of BNS mergers for which errors on tidal parameters were calculated. 3. An ipython notebook (instructions.ipynb) that shows how the data can be used. References: 1. Evans, Matthew et al. Cosmic Explorer: A Submission to the NSF MPSAC ngGW Subcommittee (2023). arXiv: 2306.13745 [gr-qc]. 2. Gupta, Ish et al. Characterizing Gravitational Wave Detector Networks: From A# to Cosmic Explorer (2023). In preparation. 3. Borhanian, Ssohrab. GWBENCH: a novel Fisher information package for gravitational-wave benchmarking. Class. Quant. Grav. 38, 175014 (2021). arXiv: 2010.15202 [gr-qc].more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
