skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The missing link in gravitational-wave astronomy: A summary of discoveries waiting in the decihertz range
Abstract Since 2015 the gravitational-wave observations of LIGO and Virgo have transformed our understanding of compact-object binaries. In the years to come, ground-based gravitational-wave observatories such as LIGO, Virgo, and their successors will increase in sensitivity, discovering thousands of stellar-mass binaries. In the 2030s, the space-based LISA will provide gravitational-wave observations of massive black holes binaries. Between the $$\sim 10$$ ∼ 10 –10 3 Hz band of ground-based observatories and the $$\sim 10^{-4}$$ ∼ 1 0 − 4 –10 − 1 Hz band of LISA lies the uncharted decihertz gravitational-wave band. We propose a Decihertz Observatory to study this frequency range, and to complement observations made by other detectors. Decihertz observatories are well suited to observation of intermediate-mass ( $$\sim 10^{2}$$ ∼ 1 0 2 –10 4 M ⊙ ) black holes; they will be able to detect stellar-mass binaries days to years before they merge, providing early warning of nearby binary neutron star mergers and measurements of the eccentricity of binary black holes, and they will enable new tests of general relativity and the Standard Model of particle physics. Here we summarise how a Decihertz Observatory could provide unique insights into how black holes form and evolve across cosmic time, improve prospects for both multimessenger astronomy and multiband gravitational-wave astronomy, and enable new probes of gravity, particle physics and cosmology.  more » « less
Award ID(s):
1912550
PAR ID:
10325048
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Experimental Astronomy
Volume:
51
Issue:
3
ISSN:
0922-6435
Page Range / eLocation ID:
1427 to 1440
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Gravitational-wave observations by the laser interferometer gravitational-wave observatory (LIGO) and Virgo have provided us a new tool to explore the Universe on all scales from nuclear physics to the cosmos and have the massive potential to further impact fundamental physics, astrophysics, and cosmology for decades to come. In this paper we have studied the science capabilities of a network of LIGO detectors when they reach their best possible sensitivity, called A , given the infrastructure in which they exist and a new generation of observatories that are factor of 10 to 100 times more sensitive (depending on the frequency), in particular a pair of L-shaped cosmic explorer (CE) observatories (one 40 km and one 20 km arm length) in the US and the triangular Einstein telescope with 10 km arms in Europe. We use a set of science metrics derived from the top priorities of several funding agencies to characterize the science capabilities of different networks. The presence of one or two A observatories in a network containing two or one next generation observatories, respectively, will provide good localization capabilities for facilitating multimessenger astronomy (MMA) and precision measurement of the Hubble parameter. Two CE observatories are indispensable for achieving precise localization of binary neutron star events, facilitating detection of electromagnetic counterparts and transforming MMA. Their combined operation is even more important in the detection and localization of high-redshift sources, such as binary neutron stars, beyond the star-formation peak, and primordial black hole mergers, which may occur roughly 100 million years after the Big Bang. The addition of the Einstein Telescope to a network of two CE observatories is critical for accomplishing all the identified science metrics including the nuclear equation of state, cosmological parameters, the growth of black holes through cosmic history, but also make new discoveries such as the presence of dark matter within or around neutron stars and black holes, continuous gravitational waves from rotating neutron stars, transient signals from supernovae, and the production of stellar-mass black holes in the early Universe. For most metrics the triple network of next generation terrestrial observatories are a factor 100 better than what can be accomplished by a network of three A observatories. 
    more » « less
  2. Abstract LISA, the Laser Interferometer Space Antenna, will usher in a new era in gravitational-wave astronomy. As the first anticipated space-based gravitational-wave detector, it will expand our view to the millihertz gravitational-wave sky, where a spectacular variety of interesting new sources abound: from millions of ultra-compact binaries in our Galaxy, to mergers of massive black holes at cosmological distances; from the early inspirals of stellar-mass black holes that will ultimately venture into the ground-based detectors’ view to the death spiral of compact objects into massive black holes, and many sources in between. Central to realising LISA’s discovery potential are waveform models, the theoretical and phenomenological predictions of the pattern of gravitational waves that these sources emit. This White Paper is presented on behalf of the Waveform Working Group for the LISA Consortium. It provides a review of the current state of waveform models for LISA sources, and describes the significant challenges that must yet be overcome. 
    more » « less
  3. Abstract We report the observation of gravitational waves from two binary black hole coalescences during the fourth observing run of the LIGO–Virgo–KAGRA detector network, GW241011 and GW241110. The sources of these two signals are characterized by rapid and precisely measured primary spins, nonnegligible spin–orbit misalignment, and unequal mass ratios between their constituent black holes. These properties are characteristic of binaries in which the more massive object was itself formed from a previous binary black hole merger and suggest that the sources of GW241011 and GW241110 may have formed in dense stellar environments in which repeated mergers can take place. As the third-loudest gravitational-wave event published to date, with a median network signal-to-noise ratio of 36.0, GW241011 furthermore yields stringent constraints on the Kerr nature of black holes, the multipolar structure of gravitational-wave generation, and the existence of ultralight bosons within the mass range 10−13–10−12eV. 
    more » « less
  4. Abstract The dynamical formation channels of gravitational wave (GW) sources typically involve a stage when the compact object binary source interacts with the environment, which may excite its eccentricity, yielding efficient GW emission. For the wide eccentric compact object binaries, the GW emission happens mostly near the pericenter passage, creating a unique, burst-like signature in the waveform. This work examines the possibility of stellar-mass bursting sources in the mHz band for future LISA detections. Because of their long lifetime (∼107yr) and promising detectability, the number of mHz bursting sources can be large in the local Universe. For example, based on our estimates, there will be ∼3–45 bursting binary black holes in the Milky Way, with ∼102–104bursts detected during the LISA mission. Moreover, we find that the number of bursting sources strongly depends on their formation history. If certain regions undergo active formation of compact object binaries in the recent few million years, there will be a significantly higher bursting source fraction. Thus, the detection of mHz GW bursts not only serves as a clue for distinguishing different formation channels, but also helps us understand the star formation history in different regions of the Milky Way. 
    more » « less
  5. ABSTRACT Galactic nuclei are potential hosts for intermediate-mass black holes (IMBHs), whose gravitational field can affect the motion of stars and compact objects. The absence of observable perturbations in our own Galactic Centre has resulted in a few constraints on the mass and orbit of a putative IMBH. Here, we show that the Laser Interferometer Space Antenna (LISA) can further constrain these parameters if the IMBH forms a binary with a compact remnant (a white dwarf, a neutron star, or a stellar-mass black hole), as the gravitational-wave signal from the binary will exhibit Doppler-shift variations as it orbits around Sgr A*. We argue that this method is the most effective for IMBHs with masses $$10^3\, \mathrm{ M}_\odot \lesssim M_{\rm IMBH}\lesssim 10^5\, \mathrm{ M}_\odot$$ and distances of 0.1–2 mpc with respect to the supermassive black hole, a region of the parameter space partially unconstrained by other methods. We show that in this region the Doppler shift is most likely measurable whenever the binary is detected in the LISA band, and it can help constrain the mass and orbit of a putative IMBH in the centre of our Galaxy. We also discuss possible ways for an IMBH to form a binary in the Galactic Centre, showing that gravitational-wave captures of stellar-mass black holes and neutron stars are the most efficient channel. 
    more » « less