skip to main content


Title: LISA constraints on an intermediate-mass black hole in the Galactic Centre
ABSTRACT

Galactic nuclei are potential hosts for intermediate-mass black holes (IMBHs), whose gravitational field can affect the motion of stars and compact objects. The absence of observable perturbations in our own Galactic Centre has resulted in a few constraints on the mass and orbit of a putative IMBH. Here, we show that the Laser Interferometer Space Antenna (LISA) can further constrain these parameters if the IMBH forms a binary with a compact remnant (a white dwarf, a neutron star, or a stellar-mass black hole), as the gravitational-wave signal from the binary will exhibit Doppler-shift variations as it orbits around Sgr A*. We argue that this method is the most effective for IMBHs with masses $10^3\, \mathrm{ M}_\odot \lesssim M_{\rm IMBH}\lesssim 10^5\, \mathrm{ M}_\odot$ and distances of 0.1–2 mpc with respect to the supermassive black hole, a region of the parameter space partially unconstrained by other methods. We show that in this region the Doppler shift is most likely measurable whenever the binary is detected in the LISA band, and it can help constrain the mass and orbit of a putative IMBH in the centre of our Galaxy. We also discuss possible ways for an IMBH to form a binary in the Galactic Centre, showing that gravitational-wave captures of stellar-mass black holes and neutron stars are the most efficient channel.

 
more » « less
Award ID(s):
2006538 2207502
PAR ID:
10431896
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
524
Issue:
2
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 2033-2041
Size(s):
p. 2033-2041
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    The detection of Intermediate-Mass Black Holes (IMBHs) in dwarf galaxies is crucial to closing the gap in the wide mass distribution of black holes ($\sim 3 \, {\rm M_\odot }$ to $\sim 5 \times 10^{10} \, {\rm M_\odot }$). IMBHs originally located at the centre of dwarfs that later collide with the Milky Way (MW) could be wandering, undetected, in our Galaxy. We used TNG50, the highest resolution run of the IllustrisTNG project, to study the kinematics and dynamics of star clusters, in the appropriate mass range, acting as IMBH proxies in an MW analogue galaxy. We showed that $\sim 87{{\ \rm per\ cent}}$ of our studied IMBHs drift inward. The radial velocity of these sinking IMBHs has a median magnitude of $\sim 0.44 \, \mathrm{ckpc \, h^{-1} \, Gyr^{-1}}$ and no dependence on the black hole mass. The central $1 \, \rm ckpc \, h^{-1}$ has the highest number density of IMBHs in the galaxy. A physical toy model with linear drag forces was developed to explain the orbital circularization with time. These findings constrain the spatial distribution of IMBHs, suggesting that future searches should focus on the central regions of the Galaxy. Additionally, we found that the 3D velocity distribution of IMBHs with respect to the galactic centre has a mean of $\sim 180 \, \mathrm{km \, s^{-1}}$ and larger variance with decreasing radius. Remarkably, the velocity distribution relative to the local gas shows significantly lower values, with a mean of $\sim 88 \, \mathrm{km \, s^{-1}}$. These results are instrumental for predicting the accretion and radiation properties of IMBHs, facilitating their detection with future surveys.

     
    more » « less
  2. Abstract

    Intermediate-mass black holes (IMBHs) are believed to be the missing link between the supermassive black holes (BHs) found at the centers of massive galaxies and BHs formed through stellar core collapse. One of the proposed mechanisms for their formation is a collisional runaway process in high-density young star clusters, where an unusually massive object forms through repeated stellar collisions and mergers, eventually collapsing to form an IMBH. This seed IMBH could then grow further through binary mergers with other stellar-mass BHs. Here we investigate the gravitational-wave (GW) signals produced during these later IMBH–BH mergers. We use a state-of-the-art semi-analytic approach to study the stellar dynamics and to characterize the rates and properties of IMBH–BH mergers. We also study the prospects for detection of these mergers by current and future GW observatories, both space-based (LISA) and ground-based (LIGO Voyager, Einstein Telescope, and Cosmic Explorer). We find that most of the merger signals could be detected, with some of them being multiband sources. Therefore, GWs represent a unique tool to test the collisional runaway scenario and to constrain the population of dynamically assembled IMBHs.

     
    more » « less
  3. ABSTRACT

    In the near future, projects like Laser Interferometer Space Antenna (LISA) and pulsar timing arrays are expected to detect gravitational waves from mergers between supermassive black holes, and it is crucial to precisely model the underlying merger populations now to maximize what we can learn from this new data. Here, we characterize expected high-redshift (z > 2) black hole mergers using the very large volume Astrid cosmological simulation, which uses a range of seed masses to probe down to low-mass black holes (BHs), and directly incorporates dynamical friction so as to accurately model the dynamical processes that bring black holes to the galaxy centre where binary formation and coalescence will occur. The black hole populations in Astrid include black holes down to $\sim 10^{4.5} \, \mathrm{M}_\odot$, and remain broadly consistent with the TNG simulations at scales $\gt 10^6 \, \mathrm{M}_\odot$ (the seed mass used in TNG). By resolving lower mass black holes, the overall merger rate is ∼5× higher than in TNG. However, incorporating dynamical friction delays mergers compared to a recentring scheme, reducing the high-z merger rate mass-matched mergers by a factor of ∼2×. We also calculate the expected LISA signal-to-noise values, and show that the distribution peaks at high SNR (>100), emphasizing the importance of implementing a seed mass well below LISA’s peak sensitivity ($\sim 10^6 \, \mathrm{M}_\odot$) to resolve the majority of LISA’s gravitational wave detections.

     
    more » « less
  4. ABSTRACT

    We investigate the effects of prior selection on the inferred mass and spin parameters of the neutron star–black hole merger GW230529_181500. Specifically, we explore models motivated by astrophysical considerations, including massive binary and pulsar evolution. We examine mass and spin distributions of neutron stars constrained by radio pulsar observations, alongside black hole spin observations from previous gravitational-wave detections. We show that the inferred mass distribution highly depends upon the spin prior. Specifically, under the most restrictive, binary stellar evolution models, we obtain narrower distributions of masses with a black hole mass of $4.3^{+0.1}_{-0.1}\ {\rm M}_{\odot }$ and neutron star mass of $1.3^{+0.03}_{-0.03}\ {\rm M}_{\odot }$ where, somewhat surprisingly, it is the prior on component spins that has the greatest impact on the inferred mass distributions. Re-weighting using neutron star mass and spin priors from observations of radio pulsars, with black hole spins from observations of gravitational waves, yields the black hole and the neutron star masses to be $3.8^{+0.5}_{-0.6}$ and $1.4^{+0.2}_{-0.1} \ \mathrm{ M}_\odot$, respectively. The sequence of compact object formation – whether the neutron star or the black hole formed first – cannot be determined at the observed signal-to-noise ratio. However, there is no evidence that the black hole was tidally spun up.

     
    more » « less
  5. Abstract Repeated mergers of stellar-mass black holes in dense star clusters can produce intermediate-mass black holes (IMBHs). In particular, nuclear star clusters at the centers of galaxies have deep enough potential wells to retain most of the black hole (BH) merger products, in spite of the significant recoil kicks due to anisotropic emission of gravitational radiation. These events can be detected in gravitational waves, which represent an unprecedented opportunity to reveal IMBHs. In this paper, we analyze the statistical results of a wide range of numerical simulations, which encompass different cluster metallicities, initial BH seed masses, and initial BH spins, and we compute the merger rate of IMBH binaries. We find that merger rates are in the range 0.01–10 Gpc −3 yr −1 depending on IMBH masses. We also compute the number of multiband detections in ground-based and space-based observatories. Our model predicts that a few merger events per year should be detectable with LISA, DECIGO, Einstein Telescope (ET), and LIGO for IMBHs with masses ≲1000 M ⊙ , and a few tens of merger events per year with DECIGO, ET, and LIGO only. 
    more » « less