skip to main content


Title: Spontaneous polarization in van der Waals materials: Two-dimensional ferroelectrics and device applications

The research on two-dimensional (2D) van der Waals ferroelectrics has grown substantially in the last decade. These layered materials differ from conventional thin-film oxide ferroelectrics in that the surface and interface are free from dangling bonds. Some may also possess uncommon properties, such as bandgap tunability, mechanical flexibility, and high carrier mobility, which are desirable for applications in nanoelectronics and optoelectronics. This Tutorial starts by reviewing the theoretical tools in 2D ferroelectric studies, followed by discussing the material synthesis and sample characterization. Several prototypical electronic devices with innovative functionalities will be highlighted. Readers can use this article to obtain a basic understanding of the current status, challenges, and future prospects of 2D ferroelectric materials.

 
more » « less
Award ID(s):
2118806
NSF-PAR ID:
10372284
Author(s) / Creator(s):
 
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
132
Issue:
12
ISSN:
0021-8979
Page Range / eLocation ID:
Article No. 121102
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Two-dimensional (2D) materials such as semiconductors and ferroelectrics are promising for future energy-efficient logic devices because of their extraordinary electronic properties at atomic thickness. In this work, we investigated a van der Waals heterostructure composited of 2D semiconducting MoS2and 2D ferroelectric CuInP2S6(CIPS) and NiPS3. Instead of using 2D ferroelectrics as conventional gate dielectric layers, here we applied CIPS and NiPS3as a ferroelectric capping layer, and investigated a long-distance coupling effect with the gate upon the sandwiched 2D MoS2channels. Our experimental results showed an outstanding enhancement of the electrodynamic gating in 2D MoS2transistors, represented by a significant reduction of subthreshold swing at room temperature. This was due to the coupling-induced polarization of 2D ferroelectrics at 2D semiconductor surface which led to an effective and dynamic magnification of the gate capacitance. Meanwhile, the electrostatic gating was remained steady after adding the ferroelectric capping layer, providing ease and compatibility for further implementation with existing circuit and system design. Our work demonstrates the long-distance coupling effect of 2D ferroelectrics in a capping architecture, reveals its impacts from both electrodynamic and electrostatic perspectives, and expands the potential of 2D ferroelectrics to further improve the performance of energy-efficient nanoelectronics.

     
    more » « less
  2. null (Ed.)
    Recently, the developments of two-dimensional (2D) ferroelectrics and multiferroics have attracted much more attention among researchers. These materials are useful for high-density devices for multifunctional applications such as sensors, transducers, actuators, non-volatile memories, photovoltaic, and FETs. Although several theoretical works have been reported on layered ferroelectrics, experimental work is still lacking in single to few-atomic layers of 2D ferroelectric materials. In this review, we have discussed the recent theoretical as well as experimental progress of 2D ferroelectric and multiferroic materials. The emphasis is given to the development of single to few-atomic layers of 2D ferroelectric materials. In this regard, the recent developments of 2D ferroelectric polarization on vanadium oxyhalides VOX2 (X=I, Br, Cl, and F), distorted phase d1-MoTe2, In2Se3, and SnSe are discussed. d1-MoTe2 shows Curie temperature (TC) above room temperature, while few-layered In2Se3 shows in-plane ferroelectricity and interesting domain wall dynamics in a single atomic layer of SnSe. This follows the discussion of multiferroic materials based on transition metal oxyiodide MOI2 (M=Ti, V, and Cr), double perovskite bilayer, and iron-doped In2Se3. While pristine In2Se3 shows ferroelectric properties, iron-doped In2Se3 shows multiferroicity. Finally, the potential applications of 2D ferroelectrics and multiferroics have been discussed that follow the challenges and opportunities in this field, which can guide the research community to develop next-generation 2D ferroelectric and multiferroic materials with interesting properties. 
    more » « less
  3. Abstract

    Ferroelectric domain walls provide a fertile environment for novel materials physics. If a polarization discontinuity arises, it can drive a redistribution of electronic carriers and changes in band structure, which often result in emergent 2D conductivity. If such a discontinuity is not tolerated, then its amelioration usually involves the formation of complex topological patterns, such as flux‐closure domains, dipolar vortices, skyrmions, merons, or Hopfions. The degrees of freedom required for the development of such patterns, in which dipolar rotation is a hallmark, are readily found in multiaxial ferroelectrics. In uniaxial ferroelectrics, where only two opposite polar orientations are possible, it has been assumed that discontinuities are unavoidable when antiparallel components of polarization meet. This perception has been borne out by the appearance of charged conducting domain walls in systems such as hexagonal manganites and lithium niobate. Here, experimental and theoretical investigations on lead germanate (Pb5Ge3O11) reveal that polar discontinuities can be obviated at head‐to‐head and tail‐to‐tail domain walls by mutual domain bifurcation along two different axes, creating a characteristic saddle‐point domain wall morphology and associated novel dipolar topology, removing the need for screening charge accumulation and associated conductivity enhancement.

     
    more » « less
  4. Near the 100th anniversary of the discovery of ferroelectricity, so-called sliding ferroelectricity has been proposed and confirmed recently in a series of experiments that have stimulated remarkable interest. Such ferroelectricity exists widely and exists only in two-dimensional (2D) van der Waals stacked layers, where the vertical electric polarization is switched by in-plane interlayer sliding. Reciprocally, interlayer sliding and the “ripplocation” domain wall can be driven by an external vertical electric field. The unique combination of intralayer stiffness and interlayer slipperiness of 2D van der Waals layers greatly facilitates such switching while still maintaining environmental and mechanical robustness at ambient conditions. In this perspective, we discuss the progress and future opportunities in this behavior. The origin of such ferroelectricity as well as a general rule for judging its existence are summarized, where the vertical stacking sequence is crucial for its formation. This discovery broadens 2D ferroelectrics from very few material candidates to most of the known 2D materials. Their low switching barriers enable high-speed data writing with low energy cost. Related physics like Moiré ferroelectricity, the ferroelectric nonlinear anomalous Hall effect, and multiferroic coupling are discussed. For 2D valleytronics, nontrivial band topology and superconductivity, their possible couplings with sliding ferroelectricity via certain stacking or Moiré ferroelectricity also deserve interest. We provide critical reviews on the current challenges in this emerging area. 
    more » « less
  5. null (Ed.)
    Controlling the growth of complex relaxor ferroelectric thin films and understanding the relationship between biaxial strain–structural domain characteristics are desirable for designing materials with a high electromechanical response. For this purpose, epitaxial thin films free of extended defects and secondary phases are urgently needed. Here, we used optimized growth parameters and target compositions to obtain epitaxial (40–45 nm) 0.67Pb(Mg 1/3 Nb 2/3 )O 3 –0.33PbTiO 3 /(20 nm) SrRuO 3 (PMN–33PT/SRO) heterostructures using pulsed-laser deposition (PLD) on singly terminated SrTiO 3 (STO) and ReScO 3 (RSO) substrates with Re = Dy, Tb, Gd, Sm, and Nd. In situ reflection high-energy electron diffraction (RHEED) and high-resolution X-ray diffraction (HR-XRD) analysis confirmed high-quality and single-phase thin films with smooth 2D surfaces. High-resolution scanning transmission electron microscopy (HR-STEM) revealed sharp interfaces and homogeneous strain further confirming the epitaxial cube-on-cube growth mode of the PMN–33PT/SRO heterostructures. The combined XRD reciprocal space maps (RSMs) and piezoresponse force microscopy (PFM) analysis revealed that the domain structure of the PMN–33PT heterostructures is sensitive to the applied compressive strain. From the RSM patterns, an evolution from a butterfly-shaped diffraction pattern for mildly strained PMN–33PT layers, which is evidence of stabilization of relaxor domains, to disc-shaped diffraction patterns for high compressive strains with a highly distorted tetragonal structure, is observed. The PFM amplitude and phase of the PMN–33PT thin films confirmed the relaxor-like for a strain state below ∼1.13%, while for higher compressive strain (∼1.9%) the irregularly shaped and poled ferroelectric domains were observed. Interestingly, the PFM phase hysteresis loops of the PMN–33PT heterostructures grown on the SSO substrates (strain state of ∼0.8%) exhibited an enhanced coercive field which is about two times larger than that of the thin films grown on GSO and NSO substrates. The obtained results show that epitaxial strain engineering could serve as an effective approach for tailoring and enhancing the functional properties in relaxor ferroelectrics. 
    more » « less