skip to main content

Title: Knudsen cell studies of the uptake of gaseous ammonia and amines onto C3–C7 solid dicarboxylic acids
While atmospheric particles affect health, visibility and climate, the details governing their formation and growth are poorly understood on a molecular level. A simple model system for understanding the interactions between the gas and particle phases is the reaction of bases with acids, both of which are common constituents of atmospheric particles. In the present study, uptake coefficients for the reactions of gas phase ammonia, methylamine, ethylamine, dimethylamine and trimethylamine with a series of solid dicarboxylic acids (diacids) were measured at 296 ± 1 K using a Knudsen cell interfaced to a quadrupole mass spectrometer. The uptake coefficients ( γ ) for a given amine follow an odd–even trend in carbon number of the diacid, and are larger for the odd carbon diacids. Values range from γ = 0.4 for ethylamine on malonic acid (C3) to less than ∼10 −6 for ammonia and all amines on adipic (C6) and pimelic (C7) acids. Basicity or structure of the amines/ammonia alone do not explain the effect of the base on uptake. The crystal structures of the diacids also play a key role, which is especially evident for malonic acid (C3). Evaporation of aqueous mixtures of amines/ammonia with odd carbon diacids show the formation of ionic liquids (ILs) or in some cases, metastable ILs that revert back to a stable solid salt upon complete evaporation of water. The trends with amine and diacid structure provide insight into the mechanisms of uptake and molecular interactions that control it, including the formation of ionic liquid layers in some cases. The diversity in the kinetics and mechanisms involved in this relatively simple model system illustrate the challenges in accurately representing such processes in atmospheric models.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Phys. Chem. Chem. Phys.
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Transformation of low-volatility gaseous precursors to new particles affects aerosol number concentration, cloud formation and hence the climate. The clustering of acid and base molecules is a major mechanism driving fast nucleation and initial growth of new particles in the atmosphere. However, the acid–base cluster composition, measured using state-of-the-art mass spectrometers, cannot explain the measured high formation rate of new particles. Here we present strong evidence for the existence of base molecules such as amines in the smallest atmospheric sulfuric acid clusters prior to their detection by mass spectrometers. We demonstrate that forming (H2SO4)1(amine)1 is the rate-limiting step in atmospheric H2SO4-amine nucleation and the uptake of (H2SO4)1(amine)1 is a major pathway for the initial growth of H2SO4 clusters. The proposed mechanism is very consistent with measured new particle formation in urban Beijing, in which dimethylamine is the key base for H2SO4 nucleation while other bases such as ammonia may contribute to the growth of larger clusters. Our findings further underline the fact that strong amines, even at low concentrations and when undetected in the smallest clusters, can be crucial to particle formation in the planetary boundary layer.

    more » « less
  2. Recent research in atmospheric chemistry suggested that gaseous amines may rapidly react with the acidic components in the aerosol to be incorporated in the particle phase. However, laboratory experiments suggested that these heterogeneous processes may be sensitive to the reaction conditions, such as relative humidity (RH), the initial aerosol acidity and the initial concentration of gaseous ammonia which is ubiquitous in the atmosphere. We studied the heterogenous reactions between several amines and ammonium sulfate using a series of thermodynamic simulations under varying initial conditions, including RH, particle-phase acidity and gaseous amine and ammonia concentrations. Several distinctively different trends in the particle-phase ammonium, amines and water content were observed, depending significantly on the particle-phase acidity and the initial amine to ammonia mole ratio. One notable observation was that alkylamines may facilitate the water uptake of ammonium sulfate even in the presence of 1000 times more ammonia gas. Such change in aerosol water content may alter the surface tension, uptake coefficient and could formation properties of aerosol and influence the radiative forcing of the particles. 
    more » « less
  3. The application of direct analysis in real-time mass spectrometry (DART-MS), which is finding increasing use in atmospheric chemistry, to two different laboratory model systems for airborne particles is investigated: (1) submicron C3–C7 dicarboxylic acid (diacid) particles reacted with gas-phase trimethylamine (TMA) or butylamine (BA) and (2) secondary organic aerosol (SOA) particles from the ozonolysis of α-cedrene. The diacid particles exhibit a clear odd–even pattern in their chemical reactivity toward TMA and BA, with the odd-carbon diacid particles being substantially more reactive than even ones. The ratio of base to diacid in reacted particles, determined using known diacid–base mixtures, was compared to that measured by high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS), which vaporizes the whole particle. Results show that DART-MS probes  ∼  30 nm of the surface layer, consistent with other studies on different systems. For α-cedrene SOA particles, it is shown that varying the temperature of the particle stream as it enters the DART-MS ionization region can distinguish between specific components with the same molecular mass but different vapor pressures. These results demonstrate the utility of DART-MS for (1) examining reactivity of heterogeneous model systems for atmospheric particles and (2) probing components of SOA particles based on volatility. 
    more » « less
  4. Abstract Rationale

    Contaminants present in ambient air or in sampling lines can interfere with the target analysis through overlapping peaks or causing a high background. This study presents a positive outcome from the unexpected presence ofN‐methyl‐2‐pyrrolidone, released from a PALL HEPA filter, in the analysis of atmospherically relevant gas‐phase amines using chemical ionization mass spectrometry.


    Gas‐phase measurements were performed using a triple quadrupole mass spectrometer equipped with a modified atmospheric pressure gas chromatography (APGC) source which allows sampling of the headspace above pure amine standards. Gas‐phaseN‐methyl‐2‐pyrrolidone (NMP) emitted from a PALL HEPA filter located in the inlet stream served as the ionizing agent.


    This study demonstrates that some alkylamines efficiently form a [NMP + amine+H]+cluster with NMP upon chemical ionization at atmospheric pressure. The extent of cluster formation depends largely on the proton affinity of the amine compared with that of NMP. Aromatic amines (aniline, pyridine) and diamines (putrescine) were shown not to form cluster ions with NMP.


    The use of NMP as an ionizing agent with stand‐alone APGC provided high sensitivity for ammonia and the smaller amines. The main advantages, in addition to sensitivity, are direct sampling into the APGC source and avoiding uptake on sampling lines which can be a significant problem with ammonia and amines.

    more » « less
  5. While new particle formation events have been observed worldwide, our fundamental understanding of the precursors remains uncertain. It has been previously shown that small alkylamines and ammonia (NH 3 ) are key actors in sub-3 nm particle formation through reactions with acids such as sulfuric acid (H 2 SO 4 ) and methanesulfonic acid (CH 3 S(O)(O)OH, MSA), and that water also plays a role. Because NH 3 and amines co-exist in air, we carried out combined experimental and theoretical studies examining the influence of the addition of NH 3 on particle formation from the reactions of MSA with methylamine (MA) and trimethylamine (TMA). Experiments were performed in a 1 m flow reactor at 1 atm and 296 K. Measurements using an ultrafine condensation particle counter (CPC) and a scanning mobility particle sizer (SMPS) show that new particle formation was systematically enhanced upon simultaneous addition of NH 3 to the MSA + amine binary system, with the magnitude depending on the amine investigated. For the MSA + TMA reaction system, the addition of NH 3 at ppb concentrations produced a much greater effect ( i.e. order of magnitude more particles) than the addition of ∼12 000 ppm water (corresponding to ∼45–50% relative humidity). The effect of NH 3 on the MSA + MA system, which is already very efficient in forming particles on its own, was present but modest. Calculations of energies, partial charges and structures of small cluster models of the multi-component particles likewise suggest synergistic effects due to NH 3 in the presence of MSA and amine. The local minimum structures and the interactions involved suggest mechanisms for this effect. 
    more » « less