Abstract Transformation of low-volatility gaseous precursors to new particles affects aerosol number concentration, cloud formation and hence the climate. The clustering of acid and base molecules is a major mechanism driving fast nucleation and initial growth of new particles in the atmosphere. However, the acid–base cluster composition, measured using state-of-the-art mass spectrometers, cannot explain the measured high formation rate of new particles. Here we present strong evidence for the existence of base molecules such as amines in the smallest atmospheric sulfuric acid clusters prior to their detection by mass spectrometers. We demonstrate that forming (H2SO4)1(amine)1 is the rate-limiting step in atmospheric H2SO4-amine nucleation and the uptake of (H2SO4)1(amine)1 is a major pathway for the initial growth of H2SO4 clusters. The proposed mechanism is very consistent with measured new particle formation in urban Beijing, in which dimethylamine is the key base for H2SO4 nucleation while other bases such as ammonia may contribute to the growth of larger clusters. Our findings further underline the fact that strong amines, even at low concentrations and when undetected in the smallest clusters, can be crucial to particle formation in the planetary boundary layer. 
                        more » 
                        « less   
                    
                            
                            Significant contributions of trimethylamine to sulfuric acid nucleation in polluted environments
                        
                    
    
            Abstract As one of the least understood aerosol processes, nucleation can be a dominant source of atmospheric aerosols. Sulfuric acid (SA)-amine binary nucleation with dimethylamine (DMA) has been recognized as a governing mechanism in the polluted continental boundary layer. Here we demonstrate the importance of trimethylamine (TMA) for nucleation in the complex atmosphere and propose a molecular-level SA-DMA-TMA ternary nucleation mechanism as an improvement upon the conventional binary mechanism. Using the proposed mechanism, we could connect the gaseous amines to the SA-amine cluster signals measured in the atmosphere of urban Beijing. Results show that TMA can accelerate the SA-DMA-based new particle formation in Beijing by 50–100%. Considering the global abundance of TMA and DMA, our findings imply comparable importance of TMA and DMA to nucleation in the polluted continental boundary layer, with probably higher contributions from TMA in polluted rural environments and future urban environments with controlled DMA emissions. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2004066
- PAR ID:
- 10426313
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- npj Climate and Atmospheric Science
- Volume:
- 6
- Issue:
- 1
- ISSN:
- 2397-3722
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract. Ammonia and amines play critical roles in secondary aerosol formation, especially in urban environments. However, fast measurements of ammonia and amines in the atmosphere are very scarce. We measured ammonia and amines with a chemical ionization mass spectrometer (CIMS) at the urban center in Houston, Texas, the fourth most populated urban site in the United States, during October 2022. Ammonia concentrations were on average four parts per billion by volume (ppbv), while the concentration of an individual amine ranged from several parts per trillion by volume (pptv) to hundreds of pptv. These reduced nitrogen compounds were more abundant during weekdays than on weekends and correlated with measured CO concentrations, implying they were mostly emitted from pollutant sources. Both ammonia and amines showed a distinct diurnal cycle, with higher concentrations in the warmer afternoon, indicating dominant gas-to-particle conversion processes taking place with the changing ambient temperatures. Studies have shown that dimethylamine is critical for new particle formation (NPF) in the polluted boundary layer, but currently there are no amine emission inventories in global climate models (as opposed to ammonia). Our observations made in the very polluted area of Houston, as well as a less polluted site (Kent, Ohio) from our previous study (You et al., 2014), indicate there is a consistent ratio of dimethylamine over ammonia at these two sites. Thus, our observations can provide a relatively constrained proxy of dimethylamine using 0.1 % ammonia concentrations at polluted sites in the United States to model NPF processes.more » « less
- 
            Abstract Aerosol-boundary layer interactions play an important role in affecting atmospheric thermodynamics and air pollution. As a key factor in dictating the development of the boundary layer, the entrainment process in the context of aerosol-boundary layer interactions is still poorly understood. Using comprehensive field observations made at a superstation in Beijing, we gain insight into the response of the entrainment process to aerosols. We found that high aerosol loading can significantly suppress the entrainment rate, breaking the conventional linear relationship between sensible heat fluxes and entrainment fluxes. Related to aerosol vertical distributions, aerosol heating effects can alter vertical heat fluxes, leading to a strong interaction between aerosols and the entrainment process in the upper boundary layer. Such aerosol-entrainment coupling can inhibit boundary layer development and explains the great sensitivity of observed entrainment rates to aerosols than can traditional calculations. The notable impact of aerosols on the entrainment process raises holistic thinking about the dynamic framework of the boundary layer in a polluted atmosphere, which may have a significant bearing on the dispersion of air pollutants and the land-atmosphere coupling.more » « less
- 
            null (Ed.)Intense and frequent new particle formation (NPF) events have been observed in polluted urban environments, yet the dominant mechanisms are still under debate. To understand the key species and governing processes of NPF in polluted urban environments, we conducted comprehensive measurements in downtown Beijing during January–March, 2018. We performed detailed analyses on sulfuric acid cluster composition and budget, as well as the chemical and physical properties of oxidized organic molecules (OOMs). Our results demonstrate that the fast clustering of sulfuric acid (H2SO4) and base molecules triggered the NPF events, and OOMs further helped grow the newly formed particles toward climate- and health-relevant sizes. This synergistic role of H2SO4, base species, and OOMs in NPF is likely representative of polluted urban environments where abundant H2SO4 and base species usually co-exist, and OOMs are with moderately low volatility when produced under high NOx concentrations.more » « less
- 
            Abstract Nucleation and subsequent growth of new aerosol particles in the atmosphere is a major source of cloud condensation nuclei and persistent large uncertainty in climate models. Newly formed particles need to grow rapidly to avoid scavenging by pre-existing aerosols and become relevant for the climate and air quality. In the continental atmosphere, condensation of oxygenated organic molecules is often the dominant mechanism for rapid growth. However, the huge variety of different organics present in the continental boundary layer makes it challenging to predict nanoparticle growth rates from gas-phase measurements. Moreover, recent studies have shown that growth rates of nanoparticles derived from particle size distribution measurements show surprisingly little dependency on potentially condensable vapors observed in the gas phase. Here, we show that the observed nanoparticle growth rates in the sub-10 nm size range can be predicted in the boreal forest only for springtime conditions, even with state-of-the-art mass spectrometers and particle sizing instruments. We find that, especially under warmer conditions, observed growth is slower than predicted from gas-phase condensation. We show that only a combination of simple particle-phase reaction schemes, phase separation due to non-ideal solution behavior, or particle-phase diffusion limitations can explain the observed lower growth rates. Our analysis provides first insights as to why atmospheric nanoparticle growth rates above 10 nm h−1are rarely observed. Ultimately, a reduction of experimental uncertainties and improved sub-10 nm particle hygroscopicity and chemical composition measurements are needed to further investigate the occurrence of such a growth rate-limiting process.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
