skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Influence of Volcanic Aerosol Meridional Structure on Monsoon Responses over the Last Millennium
Abstract Monsoon responses to eruptions over the last millennium (LM) are examined in an ensemble of climate simulations as a function of eruption hemisphere. A composite analysis reveals a particularly strong sensitivity of monsoon rainfall in the year following Northern Hemisphere (NH) extratropical eruptions. Additional analysis focusing on the 18th century eruption of Mt. Laki and idealized simulations representing an analogue Southern Hemisphere eruption (SH‐Laki) reveal monsoon responses that are approximately symmetric across hemispheres, despite exhibiting asymmetries in other aspects of the climate response. We conclude that 1) latitudinally mirrored eruptions result in approximately symmetric monsoon responses, 2) disproportionate weakening (strengthening) of NH (SH) monsoons by NH eruptions over the LM resulted in part from their relatively high latitudes, and 3) uncertainty in eruption latitude fundamentally limits our ability to accurately simulate associated monsoon and tropical precipitation responses in nature.  more » « less
Award ID(s):
1805143
PAR ID:
10372440
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
46
Issue:
21
ISSN:
0094-8276
Page Range / eLocation ID:
p. 12350-12359
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Sulfur‐rich volcanic eruptions happen sporadically. If Stratospheric Aerosol Injection (SAI) were to be deployed, it is likely that explosive volcanic eruptions would happen during such a deployment. Here we use an ensemble of Earth System Model simulations to show how changing the injection strategy post‐eruption could be used to reduce the climate risks of a large volcanic eruption; the risks are also modified even without any change to the strategy. For a medium‐size eruption (10 Tg‐SO2) comparable to the SAI injection rate, the volcanic‐induced cooling would be reduced if it occurs under SAI, especially if artificial sulfur dioxide injections were immediately suspended. Alternatively, suspending injection only in the eruption hemisphere and continuing injection in the opposite would reduce shifts in precipitation in the tropical belt and thus mitigate eruption‐induced drought. Finally, we show that for eruptions much larger than the SAI deployment, changes in SAI strategy would have minimal effect. 
    more » « less
  2. null (Ed.)
    Abstract The observed zonal-mean extratropical storm tracks exhibit distinct hemispheric seasonality. Previously, the moist static energy (MSE) framework was used diagnostically to show that shortwave absorption (insolation) dominates seasonality but surface heat fluxes damp seasonality in the Southern Hemisphere (SH) and amplify it in the Northern Hemisphere (NH). Here we establish the causal role of surface fluxes (ocean energy storage) by varying the mixed layer depth d in zonally symmetric 1) slab-ocean aquaplanet simulations with zero ocean energy transport and 2) energy balance model (EBM) simulations. Using a scaling analysis we define a critical mixed layer depth dc and hypothesize 1) large mixed layer depths (d > dc) produce surface heat fluxes that are out of phase with shortwave absorption resulting in small storm track seasonality and 2) small mixed layer depths (d < dc) produce surface heat fluxes that are in phase with shortwave absorption resulting in large storm track seasonality. The aquaplanet simulations confirm the large mixed layer depth hypothesis and yield a useful idealization of the SH storm track. However, the small mixed layer depth hypothesis fails to account for the large contribution of the Ferrel cell and atmospheric storage. The small mixed layer limit does not yield a useful idealization of the NH storm track because the seasonality of the Ferrel cell contribution is opposite to the stationary eddy contribution in the NH. Varying the mixed layer depth in an EBM qualitatively supports the aquaplanet results. 
    more » « less
  3. Abstract Key questions remain about the atmospheric response to variability in the oceanic western boundary currents (WBCs). Here we exploit a unique high‐resolution slab‐ocean coupled climate model to investigate how ocean heat transport (OHT) anomalies in the major WBCs of both hemispheres affect the atmospheric circulation. Prescribed OHT anomalies lead to robust changes in convective precipitation anomalies equatorward of the maximum surface warming. The response is deepest and most pronounced over the Northern Hemisphere (NH) WBCs, where it is associated with significant changes in upper tropospheric vertical motion, condensational heating and geopotential heights. The response is relatively shallow over the Southern Hemisphere (SH) WBCs. The findings reveal the robustness of the atmospheric response to OHT anomalies and highlight key hemispheric differences: in the NH, OHT anomalies are balanced by deep atmospheric vertical motion; in the SH, they are balanced primarily by shallow horizontal temperature advection. 
    more » « less
  4. Abstract The Hunga Tonga‐Hunga Ha'apai (Hunga) volcanic eruption in January 2022 injected a substantial amount of water vapor and a moderate amount of SO2into the stratosphere. Both satellite observations in 2022 and subsequent chemistry‐climate model simulations forced by realistic Hunga perturbations reveal large‐scale cooling in the Southern Hemisphere (SH) tropical to subtropical stratosphere following the Hunga eruption. This study analyzes the drivers of this cooling, including the distinctive role of anomalies in water vapor, ozone, and sulfate aerosol concentration on the simulated climate response to the Hunga volcanic forcing, based on climate simulations with prescribed chemistry/aerosol. Simulated circulation and temperature anomalies based on specified‐chemistry simulations show good agreement with previous coupled‐chemistry simulations and indicate that each forcing of ozone, water vapor, and sulfate aerosol from the Hunga volcanic eruption contributed to the circulation and temperature anomalies in the SH stratosphere. Our results also suggest that (a) the large‐scale stratospheric cooling during the austral winter was mainly induced by changes in dynamical processes, not by radiative processes, and that (b) the radiative feedback from negative ozone anomalies contributed to the prolonged cold temperature anomalies in the lower stratosphere (∼70 hPa level) and hence to long lasting cold conditions of the polar vortex. 
    more » « less
  5. Abstract Explosive volcanic eruptions are one of the largest natural climate perturbations, but few observational constraints exist on either the climate responses to eruptions or the properties (size, hemispheric aerosol distribution, etc.) of the eruptions themselves. Paleoclimate records are thus important sources of information on past eruptions, often through the measurement of oxygen isotopic ratios (δ18O) in natural archives. However, since many processes affectδ18O, the dynamical interpretation of these records can be quite complex. Here we present results from new, isotope‐enabled members of the Community Earth System Model Last Millennium Ensemble, documenting eruption‐inducedδ18O variations throughout the climate system. Eruptions create significant perturbations in theδ18O of precipitation and soil moisture in central/eastern North America, via excitation of the Atlantic Multidecadal Oscillation. Monsoon Asia and Australia also exhibit strong precipitation and soilδ18O anomalies; in these cases,δ18O may reflect changes to El Niño‐Southern Oscillation phase following eruptions. Salinity and seawaterδ18O patterns demonstrate the importance of both local hydrologic shifts and the phasing of the El Niño‐Southern Oscillation response, both along the equator and in the subtropics. In all cases, the responses are highly sensitive to eruption latitude, which points to the utility of isotopic records in constraining aerosol distribution patterns associated with past eruptions. This is most effective using precipitationδ18O; all Southern eruptions and the majority (66%) of Northern eruptions can be correctly identified. This work thus serves as a starting point for new, quantitative uses of isotopic records for understanding volcanic impacts on climate. 
    more » « less