skip to main content


Title: Seascape genetics of the stalked kelp Pterygophora californica and comparative population genetics in the Santa Barbara Channel

We conducted a population genetic analysis of the stalked kelp,Pterygophora californica, in the Santa Barbara Channel, California,USA. The results were compared with previous work on the genetic differentiation of giant kelp,Macrocystis pyrifera,in the same region. These two sympatric kelps not only share many life history and dispersal characteristics but also differ in that dislodgedP. californicadoes not produce floating rafts with buoyant fertile sporophytes, commonly observed forM. pyrifera. We used a comparative population genetic approach with these two species to test the hypothesis that the ability to produce floating rafts increases the genetic connectivity among kelp patches in the Santa Barbara Channel. We quantified the association of habitat continuity and oceanographic distance with the genetic differentiation observed in stalked kelp, like previously conducted for giant kelp. We compared both overall (across all patches) and pairwise (between patches) genetic differentiation. We found that oceanographic transit time, habitat continuity, and geographic distance were all associated with genetic connectivity inP. californica, supporting similar previous findings forM. pyrifera. Controlling for differences in heterozygosity between kelp species using Jost'sDEST, we showed that global differentiation and pairwise differentiation were similar among patches between the two kelp species, indicating that they have similar dispersal capabilities despite their differences in rafting ability. These results suggest that rafting sporophytes do not play a significant role in effective dispersal ofM. pyriferaat ecologically relevant spatial and temporal scales.

 
more » « less
Award ID(s):
1831937
PAR ID:
10372530
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Phycology
Volume:
56
Issue:
1
ISSN:
0022-3646
Page Range / eLocation ID:
p. 110-120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Because foundation species create structure in a community, understanding their ecological and evolutionary responses to global change is critical for predicting the ecological and economic management of species and communities that rely on them. Giant kelp (Macrocystis pyrifera) is a globally distributed foundation species with seasonal fluctuations in abundance in response to local nutrient levels, storm intensity, and ocean temperatures. Here we examine genetic variation in individual and population‐level responses of early life history stages (zoospore settlement, survival, and gametogenesis) to increased temperatures to determine the potential for natural selection on temperature‐tolerant individuals that would allow adaptation to a changing climate. We collected fertileM. pyriferasporophyll blades from three sites along the California coast (Los Angeles, Santa Barbara, Monterey Bay) and induced zoospore release in the lab. Spores settled on microscope slides at three treatment temperatures (16, 20, and 22°C), matured for 21 days, and were imaged weekly to determine settlement, survival, and maturation success. On average, individuals from all sites showed lower rates of settlement and maturation in response to increasing temperature. However, the magnitude of the responses to temperature varied among populations. Survival tended to increase with temperature in Los Angeles and Santa Barbara populations but decreased with increasing temperature for the Monterey Bay population. We observed little genetic variation in temperature responses among individuals within sites, suggesting little scope for evolution within populations to increase the resilience ofM. pyriferapopulations to warming ocean temperatures and predicted declines in kelp abundance. Yet sufficient dispersal among populations could allow for adaptation of early life history traits among populations via evolutionary rescue of declining populations.

     
    more » « less
  2. Satellite and aerial imagery have been used extensively for mapping the abundance and distribution of giant kelp ( Macrocystis pyrifera ) in southern California. There is now great potential for using unoccupied aerial vehicles (UAVs) to map kelp canopy at very high resolutions. However, tides and currents have been shown to affect the amount of floating kelp canopy on the water surface, and the impacts of these processes on remotely sensed kelp estimates in this region have not been fully quantified. UAVs were used to map fine-scale changes in canopy area due to tidal height and current speed at kelp forests off the coast of Palos Verdes, CA and Santa Barbara, CA. An automated method for detecting kelp canopy was developed that was 67% accurate using red-green-blue (RGB) UAV imagery and 93% accurate using multispectral UAV imagery across a range of weather, ocean, and illumination conditions. Increases in tidal height of 1 m reduced the amount of floating kelp canopy by 15% in Santa Barbara and by over 30% in Palos Verdes. The effect of current speed on visible kelp canopy was inconclusive, but there was a trend towards lower canopy area with increased current speed. Therefore, while tidal height and current speed can introduce significant variability to estimates of kelp abundance, the magnitude of this variability is site specific. Still, UAVs are a valuable tool for mapping of kelp canopy and can provide greater spatial resolution and temporal coverage than is possible from many satellite sensors. This data can provide insight into the patterns and drivers of high frequency fluctuations in kelp abundance. 
    more » « less
  3. Abstract

    Macrocystis pyrifera(giant kelp), is a brown macroalga of great ecological importance as a primary producer and structure-forming foundational species that provides habitat for hundreds of species. It has many commercial uses (e.g. source of alginate, fertilizer, cosmetics, feedstock). One of the limitations to exploiting giant kelp’s economic potential and assisting in giant kelp conservation efforts is a lack of genomic tools like a high quality, contiguous reference genome with accurate gene annotations. Reference genomes attempt to capture the complete genomic sequence of an individual or species, and importantly provide a universal structure for comparison across a multitude of genetic experiments, both within and between species. We assembled the giant kelp genome of a haploid female gametophyte de novo using PacBio reads, then ordered contigs into chromosome level scaffolds using Hi-C. We found the giant kelp genome to be 537 MB, with a total of 35 scaffolds and 188 contigs. The assembly N50 is 13,669,674 with GC content of 50.37%. We assessed the genome completeness using BUSCO, and found giant kelp contained 94% of the BUSCO genes from the stramenopile clade. Annotation of the giant kelp genome revealed 25,919 genes. Additionally, we present genetic variation data based on 48 diploid giant kelp sporophytes from three different Southern California populations that confirms the population structure found in other studies of these populations. This work resulted in a high-quality giant kelp genome that greatly increases the genetic knowledge of this ecologically and economically vital species.

     
    more » « less
  4. Abstract

    Kelp species provide many ecosystem services associated with their three‐dimensional structures. Among these, fast‐growth, canopy‐forming species, like giant kelpMacrocystis pyrifera, are the foundation of kelp forests across many temperate reefs. Giant kelp populations have experienced regional declines in different parts of the world. Giant kelp canopy is very dynamic and can take years to recover from disturbance, challenging comparisons of standing biomass with historical baselines. The Santa Barbara Coastal LTER (SBC LTER), curates a time series of Landsat sensed surface cover and biomass for giant kelp in the west coast of North America. In the last decade, this resource has been fundamental to understanding the species' population dynamics and drivers. However, simple ready‐to‐use summary statistics aimed at classifying regional kelp decline or recovery are not readily available to stakeholders and coastal managers. To this end, we describe here two simple metrics made available through the R package kelpdecline. First, the proportion of Landsat pixels in decline (PPD), in which current biomass is compared with a historical baseline, and second, a pixel occupancy trend (POT), in which current year pixel occupancy is compared to the time‐series long probability of occupancy. The package produces raster maps and output tables summarizing kelp decline and trends over a 0.25 × 0.25° scale. Using kelpdecline, we show how sensitivity analysis onPPDparameter variation can increase the confidence of kelp decline estimates.

     
    more » « less
  5. Production rates reported for canopy‐forming kelps have highlighted the potential contributions of these foundational macroalgal species to carbon cycling and sequestration on a globally relevant scale. Yet, the production dynamics of many kelp species remain poorly resolved. For example, productivity estimates for the widely distributed giant kelpMacrocystis pyriferaare based on a few studies from the center of this species' range. To address this geospatial bias, we surveyed giant kelp beds in their high latitude fringe habitat in southeast Alaska to quantify foliar standing crop, growth and loss rates, and productivity ofM. pyriferaand co‐occurring understory kelpsHedophyllum nigripesandNeoagarum fimbriatum. We found that giant kelp beds at the poleward edge of their range produce ~150 g C · m−2· year−1from a standing biomass that turns over an estimated 2.1 times per year, substantially lower rates than have been observed at lower latitudes. Although the productivity of high latitudeM. pyriferadwarfs production by associated understory kelps in both winter and summer seasons, phenological differences in growth and relative carbon and nitrogen content among the three kelp species suggests their complementary value as nutritional resources to consumers. This work represents the highest latitude consideration ofM. pyriferaforest production to date, providing a valuable quantification of kelp carbon cycling in this highly seasonal environment.

     
    more » « less