skip to main content

Title: Global Magnetohydrodynamic Magnetosphere Simulation With an Adaptively Embedded Particle‐In‐Cell Model

We perform a geomagnetic event simulation using a newly developed magnetohydrodynamic with adaptively embedded particle‐in‐cell (MHD‐AEPIC) model. We have developed effective criteria to identify reconnection sites in the magnetotail and cover them with the PIC model. The MHD‐AEPIC simulation results are compared with Hall MHD and ideal MHD simulations to study the impacts of kinetic reconnection at multiple physical scales. At the global scale, the three models produce very similar SYM‐H and SuperMag Electrojet indexes, which indicates that the global magnetic field configurations from the three models are very close to each other. We also compare the ionospheric solver results and all three models generate similar polar cap potentials and field‐aligned currents. At the mesoscale, we compare the simulations with in situ Geotail observations in the tail. All three models produce reasonable agreement with the Geotail observations. At the kinetic scales, the MHD‐AEPIC simulation can produce a crescent shape distribution of the electron velocity space at the electron diffusion region, which agrees very well with MMS observations near a tail reconnection site. These electron scale kinetic features are not available in either the Hall MHD or ideal MHD models. Overall, the MHD‐AEPIC model compares well with observations at all scales, it works robustly, and the computational cost is acceptable due to the adaptive adjustment of the PIC domain. It remains to be determined whether kinetic physics can play a more significant role in other types of events, including but not limited to substorms.

more » « less
Award ID(s):
1663800 2031019
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Collisionless magnetic reconnection typically requires kinetic treatment that is, in general, computationally expensive compared to fluid-based models. In this study, we use the magnetohydrodynamics with an adaptively embedded particle-in-cell (MHD-AEPIC) model to study the interaction of two magnetic flux ropes. This innovative model embeds one or more adaptive PIC regions into a global MHD simulation domain such that the kinetic treatment is only applied in regions where the kinetic physics is prominent. We compare the simulation results among three cases: (1) MHD with adaptively embedded PIC regions, (2) MHD with statically (or fixed) embedded PIC regions, and (3) a full PIC simulation. The comparison yields good agreement when analyzing their reconnection rates and magnetic island separations as well as the ion pressure tensor elements and ion agyrotropy. In order to reach good agreement among the three cases, large adaptive PIC regions are needed within the MHD domain, which indicates that the magnetic island coalescence problem is highly kinetic in nature, where the coupling between the macro-scale MHD and micro-scale kinetic physics is important. 
    more » « less
  2. Abstract

    Magnetospheric sawtooth oscillations are observed during strong and steady solar wind driving conditions. The simulation results of our global magnetohydrodynamics (MHD) model with embedded kinetic physics show that when the total magnetic flux carried by constant solar wind exceeds a threshold, sawtooth‐like magnetospheric oscillations are generated. Different from previous works, this result is obtained without involving time‐varying ionospheric outflow in the model. The oscillation period and amplitude agree well with observations. The simulated oscillations cover a wide range of local times, although the distribution of magnitude as a function of longitude is different from observations. Our comparative simulations using ideal or Hall MHD models do not produce global time‐varying features, which suggests that kinetic reconnection physics in the magnetotail is a major contributing factor to sawtooth oscillations.

    more » « less
  3. Abstract

    Mercury possesses a miniature yet dynamic magnetosphere driven primarily by magnetic reconnection occurring regularly at the magnetopause and in the magnetotail. Using the newly developed Magnetohydrodynamics with Adaptively Embedded Particle‐in‐Cell (MHD‐AEPIC) model coupled with planetary interior, we have performed a series of global simulations with a range of upstream conditions to study in detail the kinetic signatures, asymmetries, and flux transfer events (FTEs) associated with Mercury's dayside magnetopause reconnection. By treating both ions and electrons kinetically, the embedded PIC model reveals crescent‐shaped phase‐space distributions near reconnection sites, counter‐streaming ion populations in the cusp region, and temperature anisotropies within FTEs. A novel metric and algorithm are developed to automatically identify reconnection X‐lines in our 3D simulations. The spatial distribution of reconnection sites as modeled by the PIC code exhibits notable dawn‐dusk asymmetries, likely due to such kinetic effects as X‐line spreading and Hall effects. Across all simulations, simulated FTEs occur quasi‐periodically every 4–9 s. The properties of simulated FTEs show clear dependencies on the upstream solar wind Alfvénic Mach number (MA) and the interplanetary magnetic field orientation, consistent with MESSENGER observations and previous Hall‐MHD simulations. FTEs formed in our MHD‐AEPIC model tend to carry a large amount of open flux, contributing ∼3%–36% of the total open flux generated at the dayside. Taken together, our MHD‐AEPIC simulations provide new insights into the kinetic processes associated with Mercury's magnetopause reconnection that should prove useful for interpreting spacecraft observations, such as those from MESSENGER and BepiColombo.

    more » « less
  4. Abstract

    We present an analysis of the energy partitioning in the magnetotail during a substorm at 03:58:00 UT on 7 February 2009. The analysis employs a multiscale approach where we use a state from a global magnetohydrodynamics (MHD) model to spawn a kinetic particle‐in‐cell (PIC) simulation of a large portion of the tail. We directly investigate the energy fluxes resulting from magnetic reconnection. The kinetic run provides information on the additional processes absent in the MHD description. The ion bulk energy and enthalpy fluxes carry the greatest energy, but the Poynting flux and electron enthalpy flux also carry a significant portion. The other fluxes (e.g., heat flux) are relatively small but are especially important because they allow us to identify the extra processes present only in the kinetic description. The energy fluxes present in the MHD approximation (Poynting flux, enthalpy flux, and bulk energy flux) are quantitatively accurate, and the kinetic correction does not greatly alter the MHD picture. However, there are two unique effects resulting from the kinetic physics. First, the formation of a rarefaction of the plasma flow into the reconnection site leads to a progressive decline in time of the particle energy fluxes with respect to the Poynting flux. Second, we observe that the instabilities developing in the kinetic reconnection outflows form structures absent from the MHD description. These structures reveal themselves as fluctuations within the energy fluxes. Especially notable are regions of inverted heat flux, where the heat flux is in the opposite direction to the total energy and mass flow.

    more » « less
  5. Abstract

    The Magnetospheric Multiscale (MMS) mission has given us unprecedented access to high cadence particle and field data of magnetic reconnection at Earth's magnetopause. MMS first passed very near an X‐line on 16 October 2015, the Burch event, and has since observed multiple X‐line crossings. Subsequent 3‐D particle‐in‐cell (PIC) modeling efforts of and comparison with the Burch event have revealed a host of novel physical insights concerning magnetic reconnection, turbulence‐induced particle mixing, and secondary instabilities. In this study, we employ theGkeyll simulation framework to study the Burch event with different classes of extended, multifluid magnetohydrodynamics (MHD), including models that incorporate important kinetic effects, such as the electron pressure tensor, with physics‐based closure relations designed to capture linear Landau damping. Such fluid modeling approaches are able to capture different levels of kinetic physics in global simulations and are generally less costly than fully kinetic PIC. We focus on the additional physics one can capture with increasing levels of fluid closure refinement via comparison with MMS data and existing PIC simulations. In particular, we find that the ten‐moment model well captures the agyrotropic structure of the pressure tensor in the vicinity of the X‐line and the magnitude of anisotropic electron heating observed in MMS and PIC simulations. However, the ten‐moment model is found to have difficulty resolving the lower hybrid drift instability, which plays a fundamental role in heating and mixing electrons in the current layer.

    more » « less