Abstract We analyzed the magnetospheric global response to dynamic pressure pulses (DPPs) using the Heliophysics System Observatory (HSO) and ground magnetometers. During northward Interplanetary Magnetic Field (IMF) Bz conditions, the magnetosphere acts as a closed “cavity” and reacts to solar wind DPPs more simply than during southward IMF. In this study we use solar wind data collected by ACE and WIND together with magnetic field observations of Geotail, Cluster, Time History of Events and Macroscale Interactions during Substorms (THEMIS), Magnetospheric Multiscale Mission (MMS), Van Allen Probes, GOES missions, and ground magnetometer arrays to observe the magnetosphere (dayside, nightside, inner magnetosphere, magnetotail, magnetosheath, etc.) and ionosphere response simultaneously in several local time sectors and regions. A total of 37 events were selected during the period between February 2007 to December 2017. We examine the global response of each event and identify systematic behavior of the magnetosphere due to DPPs' compression, such as MHD wave propagation, sudden impulses, and Ultra Low Frequency waves (ULF) in the Pc5 range. Our results confirm statistical studies with a more limited coverage that have been performed at different sectors and/or regions of the magnetosphere. We present observations of the different signatures generated in different regions that propagate through the magnetosphere. The signature of the tailward traveling DPP is observed to move at the same solar wind speed, and in superposition of other known magnetospheric perturbations. It is observed that the DPP also generates or increases the amplitude of Pc4‐5 waves observed in the inner magnetosphere, while similar waves are observed on the ground.
more »
« less
Simulation of Magnetospheric Sawtooth Oscillations: The Role of Kinetic Reconnection in the Magnetotail
Abstract Magnetospheric sawtooth oscillations are observed during strong and steady solar wind driving conditions. The simulation results of our global magnetohydrodynamics (MHD) model with embedded kinetic physics show that when the total magnetic flux carried by constant solar wind exceeds a threshold, sawtooth‐like magnetospheric oscillations are generated. Different from previous works, this result is obtained without involving time‐varying ionospheric outflow in the model. The oscillation period and amplitude agree well with observations. The simulated oscillations cover a wide range of local times, although the distribution of magnitude as a function of longitude is different from observations. Our comparative simulations using ideal or Hall MHD models do not produce global time‐varying features, which suggests that kinetic reconnection physics in the magnetotail is a major contributing factor to sawtooth oscillations.
more »
« less
- Award ID(s):
- 1663800
- PAR ID:
- 10372731
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 49
- Issue:
- 15
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We have developed a new procedure for combining lists of substorm onset times from multiple sources. We apply this procedure to observational data and to magnetohydrodynamic (MHD) model output from 1–31 January 2005. We show that this procedure is capable of rejecting false positive identifications and filling data gaps that appear in individual lists. The resulting combined onset lists produce a waiting time distribution that is comparable to previously published results, and superposed epoch analyses of the solar wind driving conditions and magnetospheric response during the resulting onset times are also comparable to previous results. Comparison of the substorm onset list from the MHD model to that obtained from observational data reveals that the MHD model reproduces many of the characteristic features of the observed substorms, in terms of solar wind driving, magnetospheric response, and waiting time distribution. Heidke skill scores show that the MHD model has statistically significant skill in predicting substorm onset times.more » « less
-
Abstract During magnetospheric substorms, plasma from magnetic reconnection in the magnetotail is thought to reach the inner magnetosphere and form a partial ring current. We simulate this process using a fully kinetic 3D particle‐in‐cell (PIC) numerical code along with a global magnetohydrodynamics (MHD) model. The PIC simulation extends from the solar wind outside the bow shock to beyond the reconnection region in the tail, while the MHD code extends much further and is run for nominal solar wind parameters and a southward interplanetary magnetic field. By the end of the PIC calculation, ions and electrons from the tail reconnection reach the inner magnetosphere and form a partial ring current and diamagnetic current. The primary source of particles to the inner magnetosphere is bursty bulk flows (BBFs) that originate from a complex pattern of reconnection in the near‐Earth magnetotail at to . Most ion acceleration occurs in this region, gaining from 10 to 50 keV as they traverse the sites of active reconnection. Electrons jet away from the reconnection region much faster than the ions, setting up an ambipolar electric field allowing the ions to catch up after approximately 10 ion inertial lengths. The initial energy flux in the BBFs is mainly kinetic energy flux from the ions, but as they move earthward, the energy flux changes to enthalpy flux at the ring current. The power delivered from the tail reconnection in the simulation to the inner magnetosphere is W, which is consistent with observations.more » « less
-
Abstract We introduce the first solar-cycle simulations from our 3D, global MHD-plasma/kinetic-neutrals model, where both hydrogen and helium atoms are treated kinetically, while electrons and helium ions are described as individual fluids. Using Voyager/PWS observations of electron density up to 160 au from the Sun for validation of several different global models, we conclude that the current estimates for the proton density in the local interstellar medium (LISM) need a revision. Our findings indicate that the commonly accepted value of 0.054 cm−3may need to be increased to values exceeding 0.07 cm−3. We also show how different assumptions regarding the proton velocity distribution function in the outer heliosheath may affect the global solution. A new feature revealed by our simulations is that the helium ion flow may be significantly compressed and heated in the heliotail at heliocentric distances exceeding ∼400 au. Additionally, we identify a Kelvin–Helmholtz instability at the boundary of the slow and fast solar wind in the inner heliosheath, which acts as a driver of turbulence in the heliotail. These results are crucial for inferring the properties of the LISM and of the global heliosphere structure.more » « less
-
Abstract The Whole Heliosphere and Planetary Interactions initiative was established to leverage relatively quiet intervals during solar minimum to better understand the interconnectedness of the various domains in the heliosphere. This study provides an expansive mosaic of observations spanning from the Sun, through interplanetary space, to the magnetospheric response and subsequent effects on the ionosphere‐thermosphere‐mesosphere (ITM) system. To accomplish this, a diverse set of observational datasets are utilized from 2019 July 26 to October 16 (i.e., over three Carrington rotations, CR2220, CR2221, and CR2222) with connections of these observations to the more focused studies submitted to this special issue. Particularly, this study focuses on two long‐lived coronal holes and their varying impact in sculpting the heliosphere and driving of the magnetospheric system. As a result, the evolution of coronal holes, impacts on the inner heliosphere solar wind, glimpses at mesoscale solar wind variability, magnetospheric response to these evolving solar wind drivers, and resulting ITM phenomena are captured to reveal the interconnectedness of this system‐of‐systems.more » « less
An official website of the United States government
