skip to main content


Title: Musical anhedonia and rewards of music listening: current advances and a proposed model
Abstract

Music frequently elicits intense emotional responses, a phenomenon that has been scrutinized from multiple disciplines that span the sciences and arts. While most people enjoy music and find it rewarding, there is substantial individual variability in the experience and degree of music‐induced reward. Here, we review current work on the neural substrates of hedonic responses to music. In particular, we focus the present review on specific musical anhedonia, a selective lack of pleasure from music. Based on evidence from neuroimaging, neuropsychology, and brain stimulation studies, we derive a neuroanatomical model of the experience of pleasure during music listening. Our model posits that hedonic responses to music are the result of connectivity between structures involved in auditory perception as a predictive process, and those involved in the brain's dopaminergic reward system. We conclude with open questions and implications of this model for future research on why humans appreciate music.

 
more » « less
NSF-PAR ID:
10372587
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Annals of the New York Academy of Sciences
Volume:
1464
Issue:
1
ISSN:
0077-8923
Page Range / eLocation ID:
p. 99-114
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Listening to pleasurable music is known to engage the brain’s reward system. This has motivated many cognitive-behavioral interventions for healthy aging, but little is known about the effects of music-based intervention (MBI) on activity and connectivity of the brain’s auditory and reward systems. Here we show preliminary evidence that brain network connectivity can change after receptive MBI in cognitively unimpaired older adults. Using a combination of whole-brain regression, seed-based connectivity analysis, and representational similarity analysis (RSA), we examined fMRI responses during music listening in older adults before and after an 8-week personalized MBI. Participants rated self-selected and researcher-selected musical excerpts on liking and familiarity. Parametric effects of liking, familiarity, and selection showed simultaneous activation in auditory, reward, and default mode network (DMN) areas. Functional connectivity within and between auditory and reward networks was modulated by participant liking and familiarity ratings. RSA showed significant representations of selection and novelty at both time-points, and an increase in striatal representation of musical stimuli following intervention. An exploratory seed-based connectivity analysis comparing pre- and post-intervention showed significant increase in functional connectivity between auditory regions and medial prefrontal cortex (mPFC). Taken together, results show how regular music listening can provide an auditory channel towards the mPFC, thus offering a potential neural mechanism for MBI supporting healthy aging.

     
    more » « less
  2. Gustatory cortical (GC) single-neuron taste responses reflect taste quality and palatability in successive epochs. Ensemble analyses reveal epoch-to-epoch firing-rate changes in these responses to be sudden, coherent transitions. Such nonlinear dynamics suggest that GC is part of a recurrent network, producing these dynamics in concert with other structures. Basolateral amygdala (BLA), which is reciprocally connected to GC and central to hedonic processing, is a strong candidate partner for GC, in that BLA taste responses evolve on the same general clock as GC and because inhibition of activity in the BLA→GC pathway degrades the sharpness of GC transitions. These facts motivate, but do not test, our overarching hypothesis that BLA and GC act as a single, comodulated network during taste processing. Here, we provide just this test of simultaneous (BLA and GC) extracellular taste responses in female rats, probing the multiregional dynamics of activity to directly test whether BLA and GC responses contain coupled dynamics. We show that BLA and GC response magnitudes covary across trials and within single responses, and that changes in BLA–GC local field potential phase coherence are epoch specific. Such classic coherence analyses, however, obscure the most salient facet of BLA–GC coupling: sudden transitions in and out of the epoch known to be involved in driving gaping behavior happen near simultaneously in the two regions, despite huge trial-to-trial variability in transition latencies. This novel form of inter-regional coupling, which we show is easily replicated in model networks, suggests collective processing in a distributed neural network.

    SIGNIFICANCE STATEMENTThere has been little investigation into real-time communication between brain regions during taste processing, a fact reflecting the dominant belief that taste circuitry is largely feedforward. Here, we perform an in-depth analysis of real-time interactions between GC and BLA in response to passive taste deliveries, using both conventional coherence metrics and a novel methodology that explicitly considers trial-to-trial variability and fast single-trial dynamics in evoked responses. Our results demonstrate that BLA–GC coherence changes as the taste response unfolds, and that BLA and GC specifically couple for the sudden transition into (and out of) the behaviorally relevant neural response epoch, suggesting (although not proving) that: (1) recurrent interactions subserve the function of the dyad as (2) a putative attractor network.

     
    more » « less
  3. Abstract

    Traditionally, lust and pride have been considered pleasurable, yet sinful in the West. Conversely, guilt is often considered aversive, yet valuable. These emotions illustrate how evaluations about specific emotions and beliefs about their hedonic properties may often diverge. Evaluations about specific emotions may shape important aspects of emotional life (e.g. in emotion regulation, emotion experience and acquisition of emotion concepts). Yet these evaluations are often understudied in affective neuroscience. Prior work in emotion regulation, affective experience, evaluation/attitudes and decision-making point to anterior prefrontal areas as candidates for supporting evaluative emotion knowledge. Thus, we examined the brain areas associated with evaluative and hedonic emotion knowledge, with a focus on the anterior prefrontal cortex. Participants (N = 25) made evaluative and hedonic ratings about emotion knowledge during functional magnetic resonance imaging (fMRI). We found that greater activity in the medial prefrontal cortex (mPFC), ventromedial PFC (vmPFC) and precuneus was associated with an evaluative (vs hedonic) focus on emotion knowledge. Our results suggest that the mPFC and vmPFC, in particular, may play a role in evaluating discrete emotions.

     
    more » « less
  4. The neuroscience of music and music-based interventions (MBIs) is a fascinating but challenging research field. While music is a ubiquitous component of every human society, MBIs may encompass listening to music, performing music, music-based movement, undergoing music education and training, or receiving treatment from music therapists. Unraveling the brain circuits activated and influenced by MBIs may help us gain better understanding of the therapeutic and educational values of MBIs by gathering strong research evidence. However, the complexity and variety of MBIs impose unique research challenges. This article reviews the recent endeavor led by the National Institutes of Health to support evidence-based research of MBIs and their impact on health and diseases. It also highlights fundamental challenges and strategies of MBI research with emphases on the utilization of animal models, human brain imaging and stimulation technologies, behavior and motion capturing tools, and computational approaches. It concludes with suggestions of basic requirements when studying MBIs and promising future directions to further strengthen evidence-based research on MBIs in connections with brain circuitry. SIGNIFICANCE STATEMENT Music and music-based interventions (MBI) engage a wide range of brain circuits and hold promising therapeutic potentials for a variety of health conditions. Comparative studies using animal models have helped in uncovering brain circuit activities involved in rhythm perception, while human imaging, brain stimulation, and motion capture technologies have enabled neural circuit analysis underlying the effects of MBIs on motor, affective/reward, and cognitive function. Combining computational analysis, such as prediction method, with mechanistic studies in animal models and humans may unravel the complexity of MBIs and their effects on health and disease. 
    more » « less
  5. Abstract

    Experiences within one’s social environment shape neural sensitivity to threatening and rewarding social cues. However, in racialized societies like the USA, youth from minoritized racial/ethnic backgrounds can have different experiences and perceptions within neighborhoods that share similar characteristics. The current study examined how neighborhood disadvantage intersects with racial/ethnic background in relation to neural sensitivity to social cues. A racially diverse (59 Hispanic/Latine, 48 White, 37 Black/African American, 15 multi-racial and 6 other) and primarily low to middle socioeconomic status sample of 165 adolescents (88 female; Mage = 12.89) completed a social incentive delay task while undergoing functional magnetic resonance imaging (fMRI) scanning. We tested for differences in the association between neighborhood disadvantage and neural responses to social threat and reward cues across racial/ethnic groups. For threat processing, compared to White youth, neighborhood disadvantage was related to greater neural activation in regions involved in salience detection (e.g. anterior cingulate cortex) for Black youth and regions involved in mentalizing (e.g. temporoparietal junction) for Latine youth. For reward processing, neighborhood disadvantage was related to greater brain activation in reward, salience and mentalizing regions for Black youth only. This study offers a novel exploration of diversity within adolescent neural development and important insights into our understanding of how social environments may ‘get under the skull’ differentially across racial/ethnic groups.

     
    more » « less