Understanding human mobility is of great significance for sustainable transportation planning. Long-term travel delay change is a key metric to measure human mobility evolution in cities. However, it is challenging to quantify the long-term travel delay because it happens in different modalities, e.g., subway, taxi, bus, and personal cars, with implicated coupling. More importantly, the data for long-term multi-modal delay modeling is challenging to obtain in practice. As a result, the existing travel delay measurements mainly focus on either single-modal system or short-term mobility patterns, which cannot reveal the long-term travel dynamics and the impact among multi-modal systems. In this paper, we perform a travel delay measurement study to quantify and understand long-term multi-modal travel delay. Our measurement study utilizes a 5-year dataset of 8 million residents from 2013 to 2017 including a subway system with 3 million daily passengers, a 15 thousand taxi system, a 10 thousand personal car system, and a 13 thousand bus system in the Chinese city Shenzhen. We share new observations as follows: (1) the aboveground system has a higher delay increase overall than that of the underground system but the increase of it is slow down; (2) the underground system infrastructure upgrades decreases the aboveground system travel delay increase in contrast to the increase the underground system travel delay caused by the aboveground system infrastructure upgrades; (3) the travel delays of the underground system decreases in the higher population region and during the peak hours.
more » « less- PAR ID:
- 10372657
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Urban anomalies have a large impact on passengers' travel behavior and city infrastructures, which can cause uncertainty on travel time estimation. Understanding the impact of urban anomalies on travel time is of great value for various applications such as urban planning, human mobility studies and navigation systems. Most existing studies on travel time have been focused on the total riding time between two locations on an individual transportation modality. However, passengers often take different modes of transportation, e.g., taxis, subways, buses or private vehicles, and a significant portion of the travel time is spent in the uncertain waiting. In this paper, we study the fine-grained travel time patterns in multiple transportation systems under the impact of urban anomalies. Specifically, (i) we investigate implicit components, including waiting and riding time, in multiple transportation systems; (ii) we measure the impact of real-world anomalies on travel time components; (iii) we design a learning-based model for travel time component prediction with anomalies. Different from existing studies, we implement and evaluate our measurement framework on multiple data sources including four city-scale transportation systems, which are (i) a 14-thousand taxicab network, (ii) a 13-thousand bus network, (iii) a 10-thousand private vehicle network, and (iv) an automatic fare collection system for a public transit network (i.e., subway and bus) with 5 million smart cards.more » « less
-
An integrated urban transportation system usually consists of multiple transport modes that have complementary characteristics of capacities, speeds, and costs, facilitating smooth passenger transfers according to planned schedules. However, such an integration is not designed to operate under disruptive events, e.g., a signal failure at a subway station or a breakdown of a bus, which have rippling effects on passenger demand and significantly increase delays. To address these disruptive events, current solutions mainly rely on a substitute service to transport passengers from and to affected areas using adhoc schedules. To fully utilize heterogeneous transportation systems under disruptive events, we design a service called eRoute based on a hierarchical receding horizon control framework to automatically reroute, reschedule, and reallocate multi-mode transportation systems based on real-time and predicted demand and supply. Focusing on an integration of subway and bus, we implement and evaluate eRoute with large datasets including (i) a bus system with 13,000 buses, (ii) a subway system with 127 subway stations, (iii) an automatic fare collection system with a total of 16,840 readers and 8 million card users from a metropolitan city. The data-driven evaluation results show that our solution improves the ratio of served passengers (RSP) by up to 11.5 times and reduces the average traveling time by up to 82.1% compared with existing solutions.more » « less
-
In this paper, we consider a multi-modal mobility system of travelers each with an individual travel budget, and propose a game-theoretic framework to assign each traveler to a “mobility service” (each one representing a different mode of transportation). We are interested in equity and sustainability, thus we maximize the worst-case revenue of the mobility system while ensuring “mobility equity,” which we define it in terms of accessibility. In the proposed framework, we ensure that all travelers are truthful and voluntarily participate under informational asymmetry, and the solution respects the individual budget of each traveler. Each traveler may seek to travel using multiple services (e.g., car, bus, train, bike). The services are capacitated and can serve up to a fixed number of travelers at any instant of time. Thus, our problem falls under the category of many-to-one assignment problems, where the goal is to find the conditions that guarantee the stability of assignments. We formulate a linear program of maximizing worst-case revenue under the constraints of mobility equity, and we fully characterize the optimal solution.more » « less
-
Abstract This paper investigates the deployment of solar technology throughout an electric railway system to accommodate tractive power needs. The approach is evaluated from both a technical and financial standpoint to better understand its overall feasibility. A case study is presented using New York City's subway system as the centre of deployment. As a means to both prevent excess voltages, as well as contribute to the city's shift to zero emission, parallel electric bus charging is also studied. It has been demonstrated that the proposed integration allows the subway system to still function without any hindrance to rail operation. The system is able to provide charging power for three to six electric buses per passenger station. In addition, the approach shows long‐term financial growth with average annual electric bill savings of approximately $50,000 per passenger station, each with a relatively short payback period of approximately 4 years.
-
In northeast Russia, the famous historic Kolyma Road spans two thousand kilometers across two federal subjects of the Russian Federation: the Sakha Republic (Yakutia) and Magadan Oblast. Thousands of people live along and in close proximity to the road, depending on it for communication, mobility, goods, and life support. As the major transportation infrastructure in the entire region, it should be reliable and stable for local communities’ well-being. One strategic approach to ensure its reliability is to acknowledge the role of Indigenous knowledge, which has been neglected despite being established long before the emergence of existing formal systems of communication. Based on data collected through fieldwork, personal observations, and conversations, this paper aims to demonstrate that Indigenous knowledge regarding ways of living, moving, and communicating along and on the road is the key to sustainability in the region. As a result, we claim that this realization should be manifested in designing and implementing communication and mobility systems based on the principles of diversity, equity, and inclusion. In the long term, it is necessary to develop a sustainable road management system for the Kolyma Road to ensure the security and well-being of local communities and for everyone visiting and working on the road.