skip to main content


Title: Vegetation green‐up date is more sensitive to permafrost degradation than climate change in spring across the northern permafrost region
Abstract

Global climate change substantially influences vegetation spring phenology, that is, green‐up date (GUD), in the northern permafrost region. Changes in GUD regulate ecosystem carbon uptake, further feeding back to local and regional climate systems. Extant studies mainly focused on the direct effects of climate factors, such as temperature, precipitation, and insolation; however, the responses of GUD to permafrost degradation caused by warming (i.e., indirect effects) remain elusive yet. In this study, we examined the impacts of permafrost degradation on GUD by analyzing the long‐term trend of satellite‐based GUD in relation to permafrost degradation measured by the start of thaw (SOT) and active layer thickness (ALT). We found significant trends of advancing GUD, SOT, and thickening ALT (< 0.05), with a spatially averaged slope of −2.1 days decade−1, −4.1 days decade−1, and +1.1 cm decade−1, respectively. Using partial correlation analyses, we found more than half of the regions with significantly negative correlations between spring temperature and GUD became nonsignificant after considering permafrost degradation. GUD exhibits dominant‐positive (37.6% vs. 0.6%) and dominant‐negative (1.8% vs. 35.1%) responses to SOT and ALT, respectively. Earlier SOT and thicker ALT would enhance soil water availability, thus alleviating water stress for vegetation green‐up. Based on sensitivity analyses, permafrost degradation was the dominant factor controlling GUD variations in 41.7% of the regions, whereas only 19.6% of the regions were dominated by other climatic factors (i.e., temperature, precipitation, and insolation). Our results indicate that GUDs were more sensitive to permafrost degradation than direct climate change in spring among different vegetation types, especially in high latitudes. This study reveals the significant impacts of permafrost degradation on vegetation GUD and highlights the importance of permafrost status in better understanding spring phenological responses to future climate change.

 
more » « less
Award ID(s):
1724786
NSF-PAR ID:
10372676
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
28
Issue:
4
ISSN:
1354-1013
Page Range / eLocation ID:
p. 1569-1582
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Lakes represent as much as ∼25% of the total land surface area in lowland permafrost regions. Though decreasing lake area has become a widespread phenomenon in permafrost regions, our ability to forecast future patterns of lake drainage spanning gradients of space and time remain limited. Here, we modeled the drivers of gradual (steady declining lake area) and catastrophic (temporally abrupt decrease in lake area) lake drainage using 45 years of Landsat observations (i.e. 1975–2019) across 32 690 lakes spanning climate and environmental gradients across northern Alaska. We mapped lake area using supervised support vector machine classifiers and object based image analyses using five-year Landsat image composites spanning 388 968 km2. Drivers of lake drainage were determined with boosted regression tree models, using both static (e.g. lake morphology, proximity to drainage gradient) and dynamic predictor variables (e.g. temperature, precipitation, wildfire). Over the past 45 years, gradual drainage decreased lake area between 10% and 16%, but rates varied over time as the 1990s recorded the highest rates of gradual lake area losses associated with warm periods. Interestingly, the number of catastrophically drained lakes progressively decreased at a rate of ∼37% decade−1from 1975–1979 (102–273 lakes draining year−1) to 2010–2014 (3–8 lakes draining year−1). However this 40 year negative trend was reversed during the most recent time-period (2015–2019), with observations of catastrophic drainage among the highest on record (i.e. 100–250 lakes draining year−1), the majority of which occurred in northwestern Alaska. Gradual drainage processes were driven by lake morphology, summer air and lake temperature, snow cover, active layer depth, and the thermokarst lake settlement index (R2adj= 0.42, CV = 0.35,p< 0.0001), whereas, catastrophic drainage was driven by the thawing season length, total precipitation, permafrost thickness, and lake temperature (R2adj= 0.75, CV = 0.67,p< 0.0001). Models forecast a continued decline in lake area across northern Alaska by 15%–21% by 2050. However these estimates are conservative, as the anticipated amplitude of future climate change were well-beyond historical variability and thus insufficient to forecast abrupt ‘catastrophic’ drainage processes. Results highlight the urgency to understand the potential ecological responses and feedbacks linked with ongoing Arctic landscape reorganization.

     
    more » « less
  2. Abstract

    The Arctic is undergoing dramatic environmental change with rapidly rising surface temperatures, accelerating sea ice decline and changing snow regimes, all of which influence tundra plant phenology. Despite these changes, no globally consistent direction of trends in spring phenology has been reported across the Arctic. While spring has advanced at some sites, spring has delayed or not changed at other sites, highlighting substantial unexplained variation. Here, we test the relative importance of local temperatures, local snow melt date and regional spring drop in sea ice extent as controls of variation in spring phenology across different sites and species. Trends in long‐term time series of spring leaf‐out and flowering (average span: 18 years) were highly variable for the 14 tundra species monitored at our four study sites on the Arctic coasts of Alaska, Canada and Greenland, ranging from advances of 10.06 days per decade to delays of 1.67 days per decade. Spring temperatures and the day of spring drop in sea ice extent advanced at all sites (average 1°C per decade and 21 days per decade, respectively), but only those sites with advances in snow melt (average 5 days advance per decade) also had advancing phenology. Variation in spring plant phenology was best explained by snow melt date (mean effect: 0.45 days advance in phenology per day advance snow melt) and, to a lesser extent, by mean spring temperature (mean effect: 2.39 days advance in phenology per °C). In contrast to previous studies examining sea ice and phenology at different spatial scales, regional spring drop in sea ice extent did not predict spring phenology for any species or site in our analysis. Our findings highlight that tundra vegetation responses to global change are more complex than a direct response to warming and emphasize the importance of snow melt as a local driver of tundra spring phenology.

     
    more » « less
  3. Abstract

    Climate change has the potential to impact headwater streams in the Arctic by thawing permafrost and subsequently altering hydrologic regimes and vegetation distribution, physiognomy and productivity. Permafrost thaw and increased subsurface flow have been inferred from the chemistry of large rivers, but there is limited empirical evidence of the impacts to headwater streams. Here we demonstrate how changing vegetation cover and soil thaw may alter headwater catchment hydrology using water budgets, stream discharge trends, and chemistry across a gradient of ground temperature in northwestern Alaska. Colder, tundra-dominated catchments shed precipitation through stream discharge, whereas in warmer catchments with greater forest extent, evapotranspiration (ET) and infiltration are substantial fluxes. Forest soils thaw earlier, remain thawed longer, and display seasonal water content declines, consistent with greater ET and infiltration. Streambed infiltration and water chemistry indicate that even minor warming can lead to increased infiltration and subsurface flow. Additional warming, permafrost loss, and vegetation shifts in the Arctic will deliver water back to the atmosphere and to subsurface aquifers in many regions, with the potential to substantially reduce discharge in headwater streams, if not compensated by increasing precipitation. Decreasing discharge in headwater streams will have important implications for aquatic and riparian ecosystems.

     
    more » « less
  4. Abstract In dryland ecosystems, vegetation within different plant functional groups exhibits distinct seasonal phenologies that are affected by the prevailing hydroclimatic forcing. The seasonal variability of precipitation, atmospheric evaporative demand, and streamflow influences root-zone water availability to plants in water-limited environments. Increasing interannual variations in climate forcing of the local water balance and uncertainty regarding climate change projections have raised the potential for phenological shifts and changes to vegetation dynamics. This poses significant risks to plant functional types across large areas, especially in drylands and within riparian ecosystems. Due to the complex interactions between climate, water availability, and seasonal plant water use, the timing and amplitude of phenological responses to specific hydroclimate forcing cannot be determined a priori , thus limiting efforts to dynamically predict vegetation greenness under future climate change. Here, we analyze two decades (1994–2021) of remote sensing data (soil adjusted vegetation index (SAVI)) as well as contemporaneous hydroclimate data (precipitation, potential evapotranspiration, depth to groundwater, and air temperature), to identify and quantify the key hydroclimatic controls on the timing and amplitude of seasonal greenness. We focus on key phenological events across four different plant functional groups occupying distinct locations and rooting depths in dryland SE Arizona: semi-arid grasses and shrubs, xeric riparian terrace and hydric riparian floodplain trees. We find that key phenological events such as spring and summer greenness peaks in grass and shrubs are strongly driven by contributions from antecedent spring and monsoonal precipitation, respectively. Meanwhile seasonal canopy greenness in floodplain and terrace vegetation showed strong response to groundwater depth as well as antecedent available precipitation (aaP = P − PET) throughout reaches of perennial and intermediate streamflow permanence. The timings of spring green-up and autumn senescence were driven by seasonal changes in air temperature for all plant functional groups. Based on these findings, we develop and test a simple, empirical phenology model, that predicts the timing and amplitude of greenness based on hydroclimate forcing. We demonstrate the feasibility of the model by exploring simple, plausible climate change scenarios, which may inform our understanding of phenological shifts in dryland plant communities and may ultimately improve our predictive capability of investigating and predicting climate-phenology interactions in the future. 
    more » « less
  5. null (Ed.)
    Abstract. Despite clear signals of regional impacts of the recent severe drought inCalifornia, e.g., within Californian Central Valley groundwater storage and Sierra Nevada forests, our understanding of how this drought affected soil moisture and vegetation responses in lowland grasslands is limited. In order to better understand the resulting vulnerability of these landscapes to fire and ecosystem degradation, we aimed to generalize drought-induced changes in subsurface soil moisture and to explore its effects within grassland ecosystems of Southern California. We used a high-resolution in situ dataset of climate and soil moisture from two grassland sites (coastal and inland), alongside greenness (Normalized Difference Vegetation Index) data from Landsat imagery, to explore drought dynamics in environments with similar precipitation but contrasting evaporative demand over the period 2008–2019. We show that negative impacts of prolonged precipitation deficits on vegetation at the coastal site were buffered by fog and moderate temperatures. During the drought, the Santa Barbara region experienced an early onset of the dry season in mid-March instead of April, resulting in premature senescence of grasses by mid-April. We developed a parsimonious soil moisture balance model that captures dynamic vegetation–evapotranspiration feedbacks and analyzed the links between climate, soil moisture, and vegetation greenness over several years of simulated drought conditions, exploring the impacts of plausible climate change scenarios that reflect changes to precipitation amounts, their seasonal distribution, and evaporative demand. The redistribution of precipitation over a shortened rainy season highlighted a strong coupling of evapotranspiration to incoming precipitation at the coastal site, while the lower water-holding capacity of soils at the inland site resulted in additional drainage occurring under this scenario. The loss of spring rains due to a shortening of the rainy season also revealed a greater impact on the inland site, suggesting less resilience to low moisture at a time when plant development is about to start. The results also suggest that the coastal site would suffer disproportionally from extended dry periods, effectively driving these areas into more extreme drought than previously seen. These sensitivities suggest potential future increases in the risk of wildfires under climate change, as well as increased grassland ecosystem vulnerability. 
    more » « less