skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Global optimization of stiff dynamical systems
Abstract We present a deterministic global optimization method for nonlinear programming formulations constrained by stiff systems of ordinary differential equation (ODE) initial value problems (IVPs). The examples arise from dynamic optimization problems exhibiting both fast and slow transient phenomena commonly encountered in model‐based systems engineering applications. The proposed approach utilizes unconditionally stable implicit integration methods to reformulate the ODE‐constrained problem into a nonconvex nonlinear program (NLP) with implicit functions embedded. This problem is then solved to global optimality in finite time using a spatial branch‐and‐bound framework utilizing convex/concave relaxations of implicit functions constructed by a method which fully exploits problem sparsity. The algorithms were implemented in the Julia programming language within the EAGO.jl package and demonstrated on five illustrative examples with varying complexity relevant in process systems engineering. The developed methods enable the guaranteed global solution of dynamic optimization problems with stiff ODE–IVPs embedded.  more » « less
Award ID(s):
1932723 1706343
PAR ID:
10372713
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
AIChE Journal
Volume:
65
Issue:
12
ISSN:
0001-1541
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We introduce a general differentiable solver for time-dependent deformation problems with contact and friction. Our approach uses a finite element discretization with a high-order time integrator coupled with the recently proposed incremental potential contact method for handling contact and friction forces to solve ODE- and PDE-constrained optimization problems on scenes with complex geometry. It supports static and dynamic problems and differentiation with respect to all physical parameters involved in the physical problem description, which include shape, material parameters, friction parameters, and initial conditions. Our analytically derived adjoint formulation is efficient, with a small overhead (typically less than 10% for nonlinear problems) over the forward simulation, and shares many similarities with the forward problem, allowing the reuse of large parts of existing forward simulator code. We implement our approach on top of the open-source PolyFEM library and demonstrate the applicability of our solver to shape design, initial condition optimization, and material estimation on both simulated results and physical validations. 
    more » « less
  2. We design pairs of six-stage, third-order, alternating implicit Runge–Kutta (RK) schemes that can be used to integrate in time two stiff operators by an operator-splitting technique. We also design for each pair a companion explicit RK scheme to be used for a third, nonstiff oper- ator in an implicit-explicit (IMEX) fashion. The main application we have in mind is (non)linear parabolic problems, where the two stiff operators represent diffusion processes (for instance, in two spatial directions) and the nonstiff operator represents (non)linear transport. We identify necessary conditions for linear sectorial A( )-stability by considering a scalar ODE with two (complex) ei- genvalues lying in some fixed cone of the half-complex plane with nonpositive real part. We show numerically that it is possible to achieve A(0)-stability when combining two operators with negative eigenvalues, irrespective of their relative magnitude. Finally, we show by numerical examples includ- ing two-dimensional nonlinear transport problems discretized in space using finite elements that the proposed schemes behave well. 
    more » « less
  3. null (Ed.)
    A method is developed for transforming chance constrained optimization problems to a form numerically solvable. The transformation is accomplished by reformulating the chance constraints as nonlinear constraints using a method that combines the previously developed Split-Bernstein approximation and kernel density estimator (KDE) methods. The Split-Bernstein approximation in a particular form is a biased kernel density estimator. The bias of this kernel leads to a nonlinear approximation that does not violate the bounds of the original chance constraint. The method of applying biased KDEs to reformulate chance constraints as nonlinear constraints transforms the chance constrained optimization problem to a deterministic optimization problems that retains key properties of the chance constrained optimization problem and can be solved numerically. This method can be applied to chance constrained optimal control problems. As a result, the Split-Bernstein and Gaussian kernels are applied to a chance constrained optimal control problem and the results are compared. 
    more » « less
  4. Recently, a broad class of linear delayed and ODE-PDEs systems was shown to have an equivalent representation using Partial Integral Equations (PIEs). In this paper, we use this PIE representation, combined with algorithms for convex optimization of Partial Integral (PI) operators to bound the H2-norm for input-output systems of this class. Specifically, the methods proposed here apply to delayed and ODE-PDE systems (including delayed PDE systems) in one or two spatial variables where the disturbance does not enter through the boundary. For such systems, we define a notion of H2-norm using an initial state-to-output framework and show that this notion reduces to more traditional concepts under the assumption of existence of a strongly continuous semigroup. Next, we consider input-output systems for which there exists a PIE representation and for such systems show that computing a minimal upper bound on the H2-norm of delayed and PDE systems can be equivalently formulated as a convex optimization problem subject to linear PI operator inequalities (LPIs). We convert, then, these optimization problems to Semi-Definite Programming (SDP) problems using the PIETOOLS toolbox. Finally, we apply the results to several numerical examples – focusing on time-delay systems (TDS) for which comparable H2 approximation results are available in the literature. The numerical results demonstrate the accuracy of the computed upper bound on the H2-norm. 
    more » « less
  5. This paper reports a novel result: with proper robot models based on geometric mechanics, one can formulate the kinodynamic motion planning problems for rigid body systems as exact polynomial optimization problems. Due to the nonlinear rigid body dynamics, the motion planning problem for rigid body systems is nonconvex. Existing global optimization-based methods do not parameterize 3D rigid body motion efficiently; thus, they do not scale well to long-horizon planning problems. We use Lie groups as the configuration space and apply the variational integrator to formulate the forced rigid body dynamics as quadratic polynomials. Then, we leverage Lasserre’s hierarchy of moment relaxation to obtain the globally optimal solution via semidefinite programming. By leveraging the sparsity of the motion planning problem, the proposed algorithm has linear complexity with respect to the planning horizon. This paper demonstrates that the proposed method can provide globally optimal solutions or certificates of infeasibility at the second-order relaxation for 3D drone landing using full dynamics and inverse kinematics for serial manipulators. Moreover, we extend the algorithms to multi-body systems via the constrained variational integrators. The testing cases on cart-pole and drone with cable-suspended load suggest that the proposed algorithms can provide rank-one optimal solutions or nontrivial initial guesses. Finally, we propose strategies to speed up the computation, including an alternative formulation using quaternion, which provides empirically tight relaxations for the drone landing problem at the first-order relaxation. 
    more » « less