Initializing simulations of deformable objects involves setting the rest state of all internal forces at the rest shape of the object. However, often times the rest shape is not explicitly provided. In its absence, it is common to initialize by treating the given initial shape as the rest shape. This leads to sagging, the undesirable deformation under gravity as soon as the simulation begins. Prior solutions to sagging are limited to specific simulation systems and material models, most of them cannot handle frictional contact, and they require solving expensive global nonlinear optimization problems. We introduce a novel solution to the sagging problem that can be applied to a variety of simulation systems and materials. The key feature of our approach is that we avoid solving a global nonlinear optimization problem by performing the initialization in two stages. First, we use a global linear optimization for static equilibrium. Any nonlinearity of the material definition is handled in the local stage, which solves many small local problems efficiently and in parallel. Notably, our method can properly handle frictional contact orders of magnitude faster than prior work. We show that our approach can be applied to various simulation systems by presenting examples with mass-spring systems, cloth simulations, the finite element method, the material point method, and position-based dynamics. 
                        more » 
                        « less   
                    
                            
                            Differentiable solver for time-dependent deformation problems with contact
                        
                    
    
            We introduce a general differentiable solver for time-dependent deformation problems with contact and friction. Our approach uses a finite element discretization with a high-order time integrator coupled with the recently proposed incremental potential contact method for handling contact and friction forces to solve ODE- and PDE-constrained optimization problems on scenes with complex geometry. It supports static and dynamic problems and differentiation with respect to all physical parameters involved in the physical problem description, which include shape, material parameters, friction parameters, and initial conditions. Our analytically derived adjoint formulation is efficient, with a small overhead (typically less than 10% for nonlinear problems) over the forward simulation, and shares many similarities with the forward problem, allowing the reuse of large parts of existing forward simulator code. We implement our approach on top of the open-source PolyFEM library and demonstrate the applicability of our solver to shape design, initial condition optimization, and material estimation on both simulated results and physical validations. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10529203
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- ACM Transactions on Graphics
- Volume:
- 43
- Issue:
- 3
- ISSN:
- 0730-0301
- Page Range / eLocation ID:
- 1 to 30
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            This paper describes a class of shape optimization problems for optical metamaterials comprised of periodic microscale inclusions composed of a dielectric, low-dimensional material suspended in a non-magnetic bulk dielectric. The shape optimization approach is based on a homogenization theory for time-harmonic Maxwell's equations that describes effective material parameters for the propagation of electromagnetic waves through the metamaterial. The control parameter of the optimization is a deformation field representing the deviation of the microscale geometry from a reference configuration of the cell problem. This allows for describing the homogenized effective permittivity tensor as a function of the deformation field. We show that the underlying deformed cell problem is well-posed and regular. This, in turn, proves that the shape optimization problem is well-posed. In addition, a numerical scheme is formulated that utilizes an adjoint formulation with either gradient descent or BFGS as optimization algorithms. The developed algorithm is tested numerically on a number of prototypical shape optimization problems with a prescribed effective permittivity tensor as the target.more » « less
- 
            We present an adjoint-based optimization method to invert for stress and frictional parameters used in earthquake modeling. The forward problem is linear elastodynamics with nonlinear rate-and-state frictional faults. The misfit functional quantifies the difference between simulated and measured particle displacements or velocities at receiver locations. The misfit may include windowing or filtering operators. We derive the corresponding adjoint problem, which is linear elasticity with linearized rate-and-state friction and, for forward problems involving fault normal stress changes, nonzero fault opening, with time-dependent coefficients derived from the forward solution. The gradient of the misfit is efficiently computed by convolving forward and adjoint variables on the fault. The method thus extends the framework of full-waveform inversion to include frictional faults with rate-and-state friction. In addition, we present a space-time dual-consistent discretization of a dynamic rupture problem with a rough fault in antiplane shear, using high-order accurate summation-by-parts finite differences in combination with explicit Runge–Kutta time integration. The dual consistency of the discretization ensures that the discrete adjoint-based gradient is the exact gradient of the discrete misfit functional as well as a consistent approximation of the continuous gradient. Our theoretical results are corroborated by inversions with synthetic data. We anticipate that adjoint-based inversion of seismic and/or geodetic data will be a powerful tool for studying earthquake source processes; it can also be used to interpret laboratory friction experiments.more » « less
- 
            We present an interval-based approach for parameter identification in structural static problems. Our inverse formulation models uncertainties in measurement data as interval and exploits the Interval Finite Element Method (IFEM) combined with adjoint-based optimization. The inversion consists of a two-step algorithm: first, an estimate of the parameters is obtained by a deterministic iterative solver. Then, the algorithm switches to the interval extension of the previous solver, using the deterministic estimate of the parameters as an initial guess. The formulation is illustrated in solutions of various numerical examples showing how the guaranteed interval enclosures always contain Monte Carlo predictions.more » « less
- 
            null (Ed.)Complementarity problems, a class of mathematical optimization problems with orthogonality constraints, are widely used in many robotics tasks, such as locomotion and manipulation, due to their ability to model non-smooth phenomena (e.g., contact dynamics). In this paper, we propose a method to analyze the stability of complementarity systems with neural network controllers. First, we introduce a method to represent neural networks with rectified linear unit (ReLU) activations as the solution to a linear complementarity problem. Then, we show that systems with ReLU network controllers have an equivalent linear complementarity system (LCS) description. Using the LCS representation, we turn the stability verification problem into a linear matrix inequality (LMI) feasibility problem. We demonstrate the approach on several examples, including multi-contact problems and friction models with non-unique solutions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    