skip to main content


This content will become publicly available on June 30, 2025

Title: Differentiable solver for time-dependent deformation problems with contact

We introduce a general differentiable solver for time-dependent deformation problems with contact and friction. Our approach uses a finite element discretization with a high-order time integrator coupled with the recently proposed incremental potential contact method for handling contact and friction forces to solve ODE- and PDE-constrained optimization problems on scenes with complex geometry. It supports static and dynamic problems and differentiation with respect to all physical parameters involved in the physical problem description, which include shape, material parameters, friction parameters, and initial conditions. Our analytically derived adjoint formulation is efficient, with a small overhead (typically less than 10% for nonlinear problems) over the forward simulation, and shares many similarities with the forward problem, allowing the reuse of large parts of existing forward simulator code.

We implement our approach on top of the open-source PolyFEM library and demonstrate the applicability of our solver to shape design, initial condition optimization, and material estimation on both simulated results and physical validations.

 
more » « less
Award ID(s):
2313156 1908767 1901091 1835712
NSF-PAR ID:
10529203
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Transactions on Graphics
Volume:
43
Issue:
3
ISSN:
0730-0301
Page Range / eLocation ID:
1 to 30
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Initializing simulations of deformable objects involves setting the rest state of all internal forces at the rest shape of the object. However, often times the rest shape is not explicitly provided. In its absence, it is common to initialize by treating the given initial shape as the rest shape. This leads to sagging, the undesirable deformation under gravity as soon as the simulation begins. Prior solutions to sagging are limited to specific simulation systems and material models, most of them cannot handle frictional contact, and they require solving expensive global nonlinear optimization problems. We introduce a novel solution to the sagging problem that can be applied to a variety of simulation systems and materials. The key feature of our approach is that we avoid solving a global nonlinear optimization problem by performing the initialization in two stages. First, we use a global linear optimization for static equilibrium. Any nonlinearity of the material definition is handled in the local stage, which solves many small local problems efficiently and in parallel. Notably, our method can properly handle frictional contact orders of magnitude faster than prior work. We show that our approach can be applied to various simulation systems by presenting examples with mass-spring systems, cloth simulations, the finite element method, the material point method, and position-based dynamics. 
    more » « less
  2. This paper describes a class of shape optimization problems for optical metamaterials comprised of periodic microscale inclusions composed of a dielectric, low-dimensional material suspended in a non-magnetic bulk dielectric. The shape optimization approach is based on a homogenization theory for time-harmonic Maxwell's equations that describes effective material parameters for the propagation of electromagnetic waves through the metamaterial. The control parameter of the optimization is a deformation field representing the deviation of the microscale geometry from a reference configuration of the cell problem. This allows for describing the homogenized effective permittivity tensor as a function of the deformation field. We show that the underlying deformed cell problem is well-posed and regular. This, in turn, proves that the shape optimization problem is well-posed. In addition, a numerical scheme is formulated that utilizes an adjoint formulation with either gradient descent or BFGS as optimization algorithms. The developed algorithm is tested numerically on a number of prototypical shape optimization problems with a prescribed effective permittivity tensor as the target. 
    more » « less
  3. We present an interval-based approach for parameter identification in structural static problems. Our inverse formulation models uncertainties in measurement data as interval and exploits the Interval Finite Element Method (IFEM) combined with adjoint-based optimization. The inversion consists of a two-step algorithm: first, an estimate of the parameters is obtained by a deterministic iterative solver. Then, the algorithm switches to the interval extension of the previous solver, using the deterministic estimate of the parameters as an initial guess. The formulation is illustrated in solutions of various numerical examples showing how the guaranteed interval enclosures always contain Monte Carlo predictions. 
    more » « less
  4. null (Ed.)
    Complementarity problems, a class of mathematical optimization problems with orthogonality constraints, are widely used in many robotics tasks, such as locomotion and manipulation, due to their ability to model non-smooth phenomena (e.g., contact dynamics). In this paper, we propose a method to analyze the stability of complementarity systems with neural network controllers. First, we introduce a method to represent neural networks with rectified linear unit (ReLU) activations as the solution to a linear complementarity problem. Then, we show that systems with ReLU network controllers have an equivalent linear complementarity system (LCS) description. Using the LCS representation, we turn the stability verification problem into a linear matrix inequality (LMI) feasibility problem. We demonstrate the approach on several examples, including multi-contact problems and friction models with non-unique solutions. 
    more » « less
  5. Modern fabrication methods have greatly simplified manufacturing of complex free-form shapes at an affordable cost, and opened up new possibilities for improving functionality and customization through automatic optimization, shape optimization in particular. However, most existing shape optimization methods focus on single parts. In this work, we focus on supporting shape optimization for assemblies, more specifically, assemblies that are held together by contact and friction. Examples of which include furniture joints, construction set assemblies, certain types of prosthetic devices and many other. To enable this optimization, we present a framework supporting robust and accurate optimization of a number of important functionals, while enforcing constraints essential for assembly functionality: weight, stress, difficulty of putting the assembly together, and how reliably it stays together. Our framework is based on smoothed formulation of elasticity equations with contact, analytically derived shape derivatives, and robust remeshing to enable large changes of shape, and at the same time, maintain accuracy. We demonstrate the improvements it can achieve for a number of computational and experimental examples. 
    more » « less