skip to main content


Search for: All records

Award ID contains: 2106927

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present the characterization of the low-gravity M6 dwarf 2MASS J06195260-2903592, previously identified as an unusual field object based on its strong IR excess and variable near-IR spectrum. Multiple epochs of low-resolution (R≈ 150) near-IR spectra show large-amplitude (≈0.1–0.5 mag) continuum variations on timescales of days to 12 yr, unlike the small-amplitude variability typical for field ultracool dwarfs. The variations between epochs are well-modeled as changes in the relative extinction (ΔAV≈ 2 mag). Similarly, Panoramic Survey Telescope and Rapid Response System 1 optical photometry varies on timescales as long as 11 yr (and possibly as short as an hour) and implies comparableAVchanges. Near Earth Object Wide-field Infrared Survey Explorer mid-IR light curves also suggest changes on 6 month timescales, with amplitudes consistent with the optical/near-IR extinction variations. However, near-IR spectra, near-IR photometry, and optical photometry obtained in the past year indicate that the source can also be stable on hourly and monthly timescales. From comparison to objects of similar spectral type, the total extinction of 2MASS J0619-2903 seems to beAV≈ 4–6 mag, with perhaps epochs of lower extinction. Gaia Early Data Release 3 (EDR3) finds that 2MASS J0619-2903 has a wide-separation (1.′2 = 10,450 au) stellar companion, with an isochronal age of3110+22Myr and a mass of0.300.03+0.04M. Adopting this companion’s age and EDR3 distance (145.2 ± 0.6 pc), we estimate a mass of 0.11–0.17Mfor 2MASS J0619-2903. Altogether, 2MASS J0619-2903 appears to possess an unusually long-lived primordial circumstellar disk, perhaps making it a more obscured analog to the “Peter Pan” disks found around a few M dwarfs in nearby young moving groups.

     
    more » « less
  2. ABSTRACT Studies of T Tauri discs inform planet formation theory; observations of variability due to occultation by circumstellar dust are a useful probe of unresolved, planet-forming inner discs, especially around faint M dwarf stars. We report observations of 2M0632, an M dwarf member of the Carina young moving group that was observed by Transiting Exoplanet Survey Satellite over two 1-yr intervals. The combined light curve contains >300 dimming events, each lasting a few hours, and as deep as 40 per cent (0.55 magnitudes). These stochastic events are correlated with a distinct, stable 1.86-d periodic signal that could be stellar rotation. Concurrent ground-based, multiband photometry show reddening consistent with interstellar medium-like dust. The star’s excess emission in the infrared and emission lines in optical and infrared spectra reveal a T Tauri-like accretion disc around the star. We confirm membership of 2M0632 in the Carina group by a Bayesian analysis of its Galactic space motion and position. We combine stellar evolution models with Gaia photometry and constraints on Teff, luminosity, and the absence of detectable lithium in the photosphere to constrain the age of the group and 2M0632 to 40–60 Myr, consistent with earlier estimates. 2M0632 joins a handful of long-lived discs which challenge the canon that disc lifetimes are ≲10 Myr. All known examples surround M dwarfs, suggesting that lower X-ray/ultraviolet irradiation and slower photoevaporation by these stars can dramatically affect disc evolution. The multiplanet systems spawned by long-lived discs probably experienced significant orbital damping and migration into close-in, resonant orbits, and perhaps represented by the TRAPPIST-1 system. 
    more » « less
  3. Abstract Quasi-periodic (1.5 days) dimming (by circumstellar dust) of the 135 Myr-old AB Doradus moving group member HD 240779 was detected in photometry by TESS in late 2018. Similar observations two years later show no such signal, and ground-based photometry indicate that the signal was absent in late 2019. This suggests that the source of the dust did not survive long after 2018, e.g., it was a disrupted planetesimal, or that dust production by the body is episodic, analogous to the “evaporating” planets detected by Kepler. 
    more » « less