skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Differential Bank Migration Limits the Lifespan and Width of Braided Channel Threads
Abstract Successful management of flooding and erosion hazards on floodplains depends on our ability to predict a river channel's shape and the lifespan during which it will continue to flow. Recent progress has improved our understanding of what sets the lifespan and width of single‐thread channels; the next challenge is to extend this knowledge to braided channels and their interwoven sub‐channels (threads). In this study, we investigate the lifespan and width of braided channel threads in a large experimental data set, coupled with particle‐image velocimetry‐derived measurements of riverbank erosion and accretion. We find that, unlike single‐thread channels, braided channels in the experiment do not exhibit an equilibrium between bank erosion and accretion. Instead, bank erosion outpaces lateral accretion, causing individual threads to widen and infill until they are abandoned. Thread lifespan is limited to the time it takes for threads to triple their width: tripling of the width yields enough bank material to aggrade more than half the channel depth, at which point flow is rerouted to a narrower thread. In consequence the width of active threads is limited to three times their initial width. Threshold channel theory accurately predicts the median thread width, which is roughly double the initial width and two‐thirds the limiting width. The results are consistent with existing field data and suggest that differential bank migration is sufficient to explain why braided channels show greater width variability and higher width‐to‐depth ratios than their single‐thread counterparts.  more » « less
Award ID(s):
1719670
PAR ID:
10372782
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
58
Issue:
8
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Braided rivers distribute sediment across landscapes, often forming wide channel belts that are preserved in stratigraphy as coarse-grained deposits. Theoretical work has established quantitative links between the depth distribution of formative channels in a braided river and the geometry of their preserved strata. However, testing these predictive relationships between geomorphic process and stratigraphic product requires examining how braided rivers and their deposits coevolve, with high resolution in both space and time. Here, using a series of four runs of a physical experiment, we examine the controls of water discharge and slope on the resulting geometry of preserved deposits. Specifically, we focus on how a twofold variation in water discharge and initial riverbed slope affects the spatiotemporal distribution of channel depths and the geometry of preserved deposits of a braided river. We find that the channel depths in the laboratory experiment are described by a two-parameter gamma distribution and the deepest scours correspond to zones of erosion at channel-belt margins and channel-thread confluences in the channel belt. We use a reduced-complexity flow model to reconstruct flow depths, which were shallower compared to channel thalweg depths. Synthetic stratigraphy built from timeseries of topographic surfaces shows that the distribution of cut-and-fill-unit thickness is invariant across the experiments and is determined by the variability in scour depths. We show that the distribution of cut-and-fill-unit thickness can be used to reconstruct formative-channel-depth distributions and that the mean thickness of these units is 0.31 to 0.62 times the mean formative flow depth across all experiments. Our results suggest that variations in discharge and slope do not translate to measurable differences in preserved cut-and-fill-unit thickness, suggesting that changes in external forcings are likely to be preserved in braided river deposits only when they exceed a certain threshold of change. 
    more » « less
  2. Flow regime, sediment supply and base level control geometry and evolution of alluvial channels and floodplains. Single thread rivers subject to constant forcing can reach equi-librium conditions in which the amount of sediment deposited on the floodplain through point bar deposition and overbank sedimentation is balanced by erosion of floodplain sed-iment through channel migration. At equilibrium, floodplain slope and sediment size dis-tribution, reach-averaged channel geometry (width and depth) and channel migration rates do not change in time. In response to changes in sediment supply and floodplain width, channel geometry and migration rate, floodplain slope and size distribution are expected to evolve in space and time. Predicting this response remains an open problem for geoscien-tists and engineers. Here we use an equilibrium solution of a 1D morphodynamic frame-work of channel-floodplain evolution to investigate how equilibrium conditions change as a function of sediment supply and floodplain width. Sediment is modeled here as a mix-ture of two grain sizes, sand and mud. Channel migration rate and width are functions of near-bank flow properties and floodplain characteristics. We zero the model using input parameters based on the pre-1930 ~ reach of the Minnesota River from Mankato to Jordan, USA, where data is available for proper field scale model verification. We then use the validated model to quantify the long-term (equilibrium) response of the schematic reach to changes in sediment supply magnitude and size distribution, as well as to changes in floodplain width. 
    more » « less
  3. Flow regime, sediment supply and base level control geometry and evolution of alluvial channels and floodplains. Single thread rivers subject to constant forcing can reach equi-librium conditions in which the amount of sediment deposited on the floodplain through point bar deposition and overbank sedimentation is balanced by erosion of floodplain sed-iment through channel migration. At equilibrium, floodplain slope and sediment size dis-tribution, reach-averaged channel geometry (width and depth) and channel migration rates do not change in time. In response to changes in sediment supply and floodplain width, channel geometry and migration rate, floodplain slope and size distribution are expected to evolve in space and time. Predicting this response remains an open problem for geoscien-tists and engineers. Here we use an equilibrium solution of a 1D morphodynamic frame-work of channel-floodplain evolution to investigate how equilibrium conditions change as a function of sediment supply and floodplain width. Sediment is modeled here as a mix-ture of two grain sizes, sand and mud. Channel migration rate and width are functions of near-bank flow properties and floodplain characteristics. We zero the model using input parameters based on the pre-1930 ~ reach of the Minnesota River from Mankato to Jordan, USA, where data is available for proper field scale model verification. We then use the validated model to quantify the long-term (equilibrium) response of the schematic reach to changes in sediment supply magnitude and size distribution, as well as to changes in floodplain width. 
    more » « less
  4. Abstract A Silurian shift in fluvial stratigraphic architecture, coincident with the appearance of terrestrial vegetation in the fossil record, is traditionally cited as evidence for exclusively shallow, braided planforms in pre‐vegetation rivers. While recent recognition of deep, single‐thread channels in pre‐Silurian strata challenge this paradigm, it is unclear how these rivers maintained stable banks. Here, we reconstruct paleohydraulics and channel planform from fluvial cross‐strata of the 1.2 Ga Stoer Group. These deposits are consistent with deep (4–7 m), low‐sloping rivers (2.7 × 10−4to 4.5 × 10−5), similar in morphometry to modern single‐thread rivers. We show that reconstructed bank shear stresses approximate the cohesion provided by sand‐mud mixtures with 30%–45% mud—consistent with Stoer floodplain facies composition. These results indicate that sediment cohesion from mud alone could have fostered deep, single‐thread, pre‐vegetation rivers. We suggest that the Silurian stratigraphic shift could mark a kinematic change in channel migration rate rather than a diversification of planform. 
    more » « less
  5. Abstract Equilibrium geometry of single‐thread rivers with fixed width (engineered rivers) is determined with a flow resistance relation and a sediment transport relation, if characteristic discharge, sediment caliber and supply are specified. In self‐formed channels, however, channel width is not imposed, and one more relation is needed to predict equilibrium geometry. Specifying this relation remains an open problem. Here we present a new model that brings together a coherent train of research progress over 35 years to predict equilibrium geometry of single‐thread rivers from the conservation of channel and floodplain material. Predicted channel geometries are comparable with field observations. In response to increasing floodplain width, sand load and grain size, the equilibrium slope increases, bankfull depth and width decrease. As the volume fraction content of mud in the sediment load increases, bankfull width‐to‐depth ratio and slope decrease suggesting that mud load has a strong control on channel patterns and bankfull geometry. 
    more » « less