Developing efficient and stable organic photovoltaics (OPVs) is crucial for the technology's commercial success. However, combining these key attributes remains challenging. Herein, we incorporate the small molecule 2-((3,6-dibromo-9 H -carbazol-9-yl)ethyl)phosphonic acid (Br-2PACz) between the bulk-heterojunction (BHJ) and a 7 nm-thin layer of MoO 3 in inverted OPVs, and study its effects on the cell performance. We find that the Br-2PACz/MoO 3 hole-extraction layer (HEL) boosts the cell's power conversion efficiency (PCE) from 17.36% to 18.73% (uncertified), making them the most efficient inverted OPVs to date. The factors responsible for this improvement include enhanced charge transport, reduced carrier recombination, and favourable vertical phase separation of donor and acceptor components in the BHJ. The Br-2PACz/MoO 3 -based OPVs exhibit higher operational stability under continuous illumination and thermal annealing (80 °C). The T 80 lifetime of OPVs featuring Br-2PACz/MoO 3 – taken as the time over which the cell's PCE reduces to 80% of its initial value – increases compared to MoO 3 -only cells from 297 to 615 h upon illumination and from 731 to 1064 h upon continuous heating. Elemental analysis of the BHJs reveals the enhanced stability to originate from the partially suppressed diffusion of Mo ions into the BHJ and the favourable distribution of the donor and acceptor components induced by the Br-2PACz. 
                        more » 
                        « less   
                    
                            
                            18.9% Efficient Organic Solar Cells Based on n‐Doped Bulk‐Heterojunction and Halogen‐Substituted Self‐Assembled Monolayers as Hole Extracting Interlayers
                        
                    
    
            Abstract The influence of halogen substitutions (F, Cl, Br, and I) on the energy levels of the self‐assembled hole‐extracting molecule [2‐(9H‐Carbazol‐9‐yl)ethyl]phosphonic acid (2PACz), is investigated. It is found that the formation of self‐assembled monolayers (SAMs) of [2‐(3,6‐Difluoro‐9H‐carbazol‐9‐yl)ethyl]phosphonic acid (F‐2PACz), [2‐(3,6‐Dichloro‐9H‐carbazol‐9‐yl)ethyl]phosphonic acid (Cl‐2PACz), [2‐(3,6‐Dibromo‐9H‐carbazol‐9‐yl)ethyl]phosphonic acid (Br‐2PACz), and [2‐(3,6‐Diiodo‐9H‐carbazol‐9‐yl)ethyl]phosphonic acid (I‐2PACz) directly on indium tin oxide (ITO) increases its work function from 4.73 eV to 5.68, 5.77, 5.82, and 5.73 eV, respectively. Combining these ITO/SAM electrodes with the ternary bulk‐heterojunction (BHJ) system PM6:PM7‐Si:BTP‐eC9 yields organic photovoltaic (OPV) cells with power conversion efficiency (PCE) in the range of 17.7%–18.5%. OPVs featuring Cl‐2PACz SAMs yield the highest PCE of 18.5%, compared to cells with F‐2PACz (17.7%), Br‐2PACz (18.0%), or I‐2PACz (18.2%). Data analysis reveals that the enhanced performance of Cl‐2PACz‐based OPVs relates to the increased hole mobility, decreased interface resistance, reduced carrier recombination, and longer carrier lifetime. Furthermore, OPVs featuring Cl‐2PACz show enhanced stability under continuous illumination compared to ITO/PEDOT:PSS‐based cells. Remarkably, the introduction of the n‐dopant benzyl viologen into the BHJ further boosted the PCE of the ITO/Cl‐2PACz cells to a maximum value of 18.9%, a record‐breaking value for SAM‐based OPVs and on par with the best‐performing OPVs reported to date. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1700982
- PAR ID:
- 10372794
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Energy Materials
- Volume:
- 12
- Issue:
- 45
- ISSN:
- 1614-6832
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The light-emitting diodes (LEDs) used in indoor testing of perovskite solar cells do not expose them to the levels of ultraviolet (UV) radiation that they would receive in actual outdoor use. We report degradation mechanisms of p-i-n–structured perovskite solar cells under unfiltered sunlight and with LEDs. Weak chemical bonding between perovskites and polymer hole-transporting materials (HTMs) and transparent conducting oxides (TCOs) dominate the accelerated A-site cation migration, rather than direct degradation of HTMs. An aromatic phosphonic acid, [2-(9-ethyl-9H-carbazol-3-yl)ethyl]phosphonic acid (EtCz3EPA), enhanced bonding at the perovskite/HTM/TCO region with a phosphonic acid group bonded to TCOs and a nitrogen group interacting with lead in perovskites. A hybrid HTM of EtCz3EPA with strong hole-extraction polymers retained high efficiency and improved the UV stability of perovskite devices, and a champion perovskite minimodule—independently measured by the Perovskite PV Accelerator for Commercializing Technologies (PACT) center—retained operational efficiency of >16% after 29 weeks of outdoor testing.more » « less
- 
            The structures of a series of 2:1 cocrystals formed between 4-(dimethylamino)pyridine and each of 1,2,4,5-tetrachloro-3,6-diiodobenzene, 2C7H10N2·C6Cl4I2, 1,2,4,5-tetrabromo-3,6-diiodobenzene, 2C7H10N2·C6Br4I2, 1-bromo-4-iodo-2,3,5,6-tetrafluorobenzene, 2C7H10N2·C6BrF4I, and 1,2-dibromo-4,5-difluoro-3,6-diiodobenzene, 2C7H10N2·C6Br2F2I2, are reported. In all five structures, the core halogen-bonded 2:1 trimolecular units have geometrically similar parameters, with the central halogen-bond donor flanked by two pyridine halogen-bond acceptors twisted with respect to the central halogen-bond donor at angles ranging from 76 to 86°. The I...N halogen-bond separations are all short, ranging from 73.3 to 76.7% of the sum of the van der Waals radii, while the C—I...N bond angles are essentially linear. The Br...N halogen-bond separation in the cocrystal formed with 1-bromo-4-iodo-2,3,5,6-tetrafluorobenzene is 80.4% of the sum of the van der Waals radii. Subtle differences in the crystal packings are attributed to the role of secondary C—H...π and weak π-type interactions with chloro and bromo substituents. The cocrystals 2C7H10N2·C6Cl4I2and 2C7H10N2·C6Br4I2are isomorphous.more » « less
- 
            Abstract Phosphonic acid (PA) self‐assembled monolayers (SAMs) were deposited onto Pt/Al2O3catalysts to modify the support to enable control over CO2adsorption and CO2hydrogenation activity. Significant differences in catalytic activity toward CO2hydrogenation (reverse water‐gas shift, RWGS) were observed after coating Al2O3with PAs, suggesting that the reaction was mediated by CO2adsorption on the support. Amine‐functionalized PAs were found to outperform their alkyl counterparts in terms of activity, however there was little effect of amine location in the SAM (i. e., spacing between the amine functional group and phosphonate attachment group). One amine‐PA and one alkyl‐PA, aminopropyl phosphonic acid (C3NH2PA) and methyl phosphonic acid (C1PA), respectively, were investigated in more detail. The C3NH2PA‐modified catalyst was found to bind CO2as a combination of carbamate and bicarbonate. Additionally, at 30 °C, both PAs were found to reduce CO2adsorption uptake by approximately 50 % compared to unmodified 5 %Pt/Al2O3. CO2adsorption enthalpy was measured for the catalysts and found to be strongly correlated with hydrogenation activity, with the trend in binding enthalpy and CO2hydrogen rate trending as uncoated >C3NH2PA>C1PA. PA SAMs were found to have weaker effects on CO binding and CO selectivity, consistent with selective modification of the Al2O3support by the PAs.more » « less
- 
            Abstract Flexible perovskite solar cells (f‐PSCs) have attracted great attention due to their promising commercial prospects. However, the performance off‐PSCs is generally worse than that of their rigid counterparts. Herein, it is found that the unsatisfactory performance of planar heterojunction (PHJ)f‐PSCs can be attributed to the undesirable morphology of electron transport layer (ETL), which results from the rough surface of the flexible substrate. Precise control over the thickness and morphology of ETL tin dioxide (SnO2) not only reduces the reflectance of the indium tin oxide (ITO) on polyethylene 2,6‐naphthalate (PEN) substrate and enhances photon collection, but also decreases the trap‐state densities of perovskite films and the charge transfer resistance, leading to a great enhancement of device performance. Consequently, thef‐PSCs, with a structure of PEN/ITO/SnO2/perovskite/Spiro‐OMeTAD/Ag, exhibit a power conversion efficiency (PCE) up to 19.51% and a steady output of 19.01%. Furthermore, thef‐PSCs show a robust bending resistance and maintain about 95% of initial PCE after 6000 bending cycles at a bending radius of 8 mm, and they present an outstanding long‐term stability and retain about 90% of the initial performance after >1000 h storage in air (10% relative humidity) without encapsulation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
