skip to main content


Title: 18.9% Efficient Organic Solar Cells Based on n‐Doped Bulk‐Heterojunction and Halogen‐Substituted Self‐Assembled Monolayers as Hole Extracting Interlayers
Abstract

The influence of halogen substitutions (F, Cl, Br, and I) on the energy levels of the self‐assembled hole‐extracting molecule [2‐(9H‐Carbazol‐9‐yl)ethyl]phosphonic acid (2PACz), is investigated. It is found that the formation of self‐assembled monolayers (SAMs) of [2‐(3,6‐Difluoro‐9H‐carbazol‐9‐yl)ethyl]phosphonic acid (F‐2PACz), [2‐(3,6‐Dichloro‐9H‐carbazol‐9‐yl)ethyl]phosphonic acid (Cl‐2PACz), [2‐(3,6‐Dibromo‐9H‐carbazol‐9‐yl)ethyl]phosphonic acid (Br‐2PACz), and [2‐(3,6‐Diiodo‐9H‐carbazol‐9‐yl)ethyl]phosphonic acid (I‐2PACz) directly on indium tin oxide (ITO) increases its work function from 4.73 eV to 5.68, 5.77, 5.82, and 5.73 eV, respectively. Combining these ITO/SAM electrodes with the ternary bulk‐heterojunction (BHJ) system PM6:PM7‐Si:BTP‐eC9 yields organic photovoltaic (OPV) cells with power conversion efficiency (PCE) in the range of 17.7%–18.5%. OPVs featuring Cl‐2PACz SAMs yield the highest PCE of 18.5%, compared to cells with F‐2PACz (17.7%), Br‐2PACz (18.0%), or I‐2PACz (18.2%). Data analysis reveals that the enhanced performance of Cl‐2PACz‐based OPVs relates to the increased hole mobility, decreased interface resistance, reduced carrier recombination, and longer carrier lifetime. Furthermore, OPVs featuring Cl‐2PACz show enhanced stability under continuous illumination compared to ITO/PEDOT:PSS‐based cells. Remarkably, the introduction of the n‐dopant benzyl viologen into the BHJ further boosted the PCE of the ITO/Cl‐2PACz cells to a maximum value of 18.9%, a record‐breaking value for SAM‐based OPVs and on par with the best‐performing OPVs reported to date.

 
more » « less
Award ID(s):
1700982
NSF-PAR ID:
10372794
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Energy Materials
Volume:
12
Issue:
45
ISSN:
1614-6832
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Developing efficient and stable organic photovoltaics (OPVs) is crucial for the technology's commercial success. However, combining these key attributes remains challenging. Herein, we incorporate the small molecule 2-((3,6-dibromo-9 H -carbazol-9-yl)ethyl)phosphonic acid (Br-2PACz) between the bulk-heterojunction (BHJ) and a 7 nm-thin layer of MoO 3 in inverted OPVs, and study its effects on the cell performance. We find that the Br-2PACz/MoO 3 hole-extraction layer (HEL) boosts the cell's power conversion efficiency (PCE) from 17.36% to 18.73% (uncertified), making them the most efficient inverted OPVs to date. The factors responsible for this improvement include enhanced charge transport, reduced carrier recombination, and favourable vertical phase separation of donor and acceptor components in the BHJ. The Br-2PACz/MoO 3 -based OPVs exhibit higher operational stability under continuous illumination and thermal annealing (80 °C). The T 80 lifetime of OPVs featuring Br-2PACz/MoO 3 – taken as the time over which the cell's PCE reduces to 80% of its initial value – increases compared to MoO 3 -only cells from 297 to 615 h upon illumination and from 731 to 1064 h upon continuous heating. Elemental analysis of the BHJs reveals the enhanced stability to originate from the partially suppressed diffusion of Mo ions into the BHJ and the favourable distribution of the donor and acceptor components induced by the Br-2PACz. 
    more » « less
  2. Abstract

    [Ru(bpyPO3H2)(bpy)Cl]Cl (bpyPO3H2=6,6’‐bipyridin‐2‐yl)phosphonic acid) and [Ru(tpy)(MepyPO3H2)Cl]Cl (MepyPO3H2=(pyridin‐2‐ylmethyl)phosphonic acid) were synthesized and characterized spectroscopically and electrochemically. Each compound was found to exhibit proton‐coupled electron transfer (PCET). In the case of [Ru(bpyPO3H2)(bpy)Cl]Cl, a Ru(V/IV) couple was detected at 1.4 Vvs. NHE. Each complex was tested for its ability to catalyze C−H bond oxidation using a variety of sacrificial oxidants, and it was found that under aqueous conditions [Ru(bpyPO3H2)(bpy)Cl]Cl oxidizes secondary C−H bonds using sodium periodate (NaIO4) as the primary oxidant.

     
    more » « less
  3. The structures of a series of 2:1 cocrystals formed between 4-(dimethylamino)pyridine and each of 1,2,4,5-tetrachloro-3,6-diiodobenzene, 2C7H10N2·C6Cl4I2, 1,2,4,5-tetrabromo-3,6-diiodobenzene, 2C7H10N2·C6Br4I2, 1-bromo-4-iodo-2,3,5,6-tetrafluorobenzene, 2C7H10N2·C6BrF4I, and 1,2-dibromo-4,5-difluoro-3,6-diiodobenzene, 2C7H10N2·C6Br2F2I2, are reported. In all five structures, the core halogen-bonded 2:1 trimolecular units have geometrically similar parameters, with the central halogen-bond donor flanked by two pyridine halogen-bond acceptors twisted with respect to the central halogen-bond donor at angles ranging from 76 to 86°. The I...N halogen-bond separations are all short, ranging from 73.3 to 76.7% of the sum of the van der Waals radii, while the C—I...N bond angles are essentially linear. The Br...N halogen-bond separation in the cocrystal formed with 1-bromo-4-iodo-2,3,5,6-tetrafluorobenzene is 80.4% of the sum of the van der Waals radii. Subtle differences in the crystal packings are attributed to the role of secondary C—H...π and weak π-type interactions with chloro and bromo substituents. The cocrystals 2C7H10N2·C6Cl4I2and 2C7H10N2·C6Br4I2are isomorphous.

     
    more » « less
  4. Abstract

    Phosphonic acid (PA) self‐assembled monolayers (SAMs) were deposited onto Pt/Al2O3catalysts to modify the support to enable control over CO2adsorption and CO2hydrogenation activity. Significant differences in catalytic activity toward CO2hydrogenation (reverse water‐gas shift, RWGS) were observed after coating Al2O3with PAs, suggesting that the reaction was mediated by CO2adsorption on the support. Amine‐functionalized PAs were found to outperform their alkyl counterparts in terms of activity, however there was little effect of amine location in the SAM (i. e., spacing between the amine functional group and phosphonate attachment group). One amine‐PA and one alkyl‐PA, aminopropyl phosphonic acid (C3NH2PA) and methyl phosphonic acid (C1PA), respectively, were investigated in more detail. The C3NH2PA‐modified catalyst was found to bind CO2as a combination of carbamate and bicarbonate. Additionally, at 30 °C, both PAs were found to reduce CO2adsorption uptake by approximately 50 % compared to unmodified 5 %Pt/Al2O3. CO2adsorption enthalpy was measured for the catalysts and found to be strongly correlated with hydrogenation activity, with the trend in binding enthalpy and CO2hydrogen rate trending as uncoated >C3NH2PA>C1PA. PA SAMs were found to have weaker effects on CO binding and CO selectivity, consistent with selective modification of the Al2O3support by the PAs.

     
    more » « less
  5. Abstract

    Flexible perovskite solar cells (f‐PSCs) have attracted great attention due to their promising commercial prospects. However, the performance off‐PSCs is generally worse than that of their rigid counterparts. Herein, it is found that the unsatisfactory performance of planar heterojunction (PHJ)f‐PSCs can be attributed to the undesirable morphology of electron transport layer (ETL), which results from the rough surface of the flexible substrate. Precise control over the thickness and morphology of ETL tin dioxide (SnO2) not only reduces the reflectance of the indium tin oxide (ITO) on polyethylene 2,6‐naphthalate (PEN) substrate and enhances photon collection, but also decreases the trap‐state densities of perovskite films and the charge transfer resistance, leading to a great enhancement of device performance. Consequently, thef‐PSCs, with a structure of PEN/ITO/SnO2/perovskite/Spiro‐OMeTAD/Ag, exhibit a power conversion efficiency (PCE) up to 19.51% and a steady output of 19.01%. Furthermore, thef‐PSCs show a robust bending resistance and maintain about 95% of initial PCE after 6000 bending cycles at a bending radius of 8 mm, and they present an outstanding long‐term stability and retain about 90% of the initial performance after >1000 h storage in air (10% relative humidity) without encapsulation.

     
    more » « less