The influence of halogen substitutions (F, Cl, Br, and I) on the energy levels of the self‐assembled hole‐extracting molecule [2‐(9
- Award ID(s):
- 1700982
- NSF-PAR ID:
- 10440137
- Date Published:
- Journal Name:
- Materials Horizons
- Volume:
- 10
- Issue:
- 4
- ISSN:
- 2051-6347
- Page Range / eLocation ID:
- 1292 to 1300
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract H ‐Carbazol‐9‐yl)ethyl]phosphonic acid (2PACz), is investigated. It is found that the formation of self‐assembled monolayers (SAMs) of [2‐(3,6‐Difluoro‐9H ‐carbazol‐9‐yl)ethyl]phosphonic acid (F‐2PACz), [2‐(3,6‐Dichloro‐9H ‐carbazol‐9‐yl)ethyl]phosphonic acid (Cl‐2PACz), [2‐(3,6‐Dibromo‐9H ‐carbazol‐9‐yl)ethyl]phosphonic acid (Br‐2PACz), and [2‐(3,6‐Diiodo‐9H ‐carbazol‐9‐yl)ethyl]phosphonic acid (I‐2PACz) directly on indium tin oxide (ITO) increases its work function from 4.73 eV to 5.68, 5.77, 5.82, and 5.73 eV, respectively. Combining these ITO/SAM electrodes with the ternary bulk‐heterojunction (BHJ) system PM6:PM7‐Si:BTP‐eC9 yields organic photovoltaic (OPV) cells with power conversion efficiency (PCE) in the range of 17.7%–18.5%. OPVs featuring Cl‐2PACz SAMs yield the highest PCE of 18.5%, compared to cells with F‐2PACz (17.7%), Br‐2PACz (18.0%), or I‐2PACz (18.2%). Data analysis reveals that the enhanced performance of Cl‐2PACz‐based OPVs relates to the increased hole mobility, decreased interface resistance, reduced carrier recombination, and longer carrier lifetime. Furthermore, OPVs featuring Cl‐2PACz show enhanced stability under continuous illumination compared to ITO/PEDOT:PSS‐based cells. Remarkably, the introduction of the n‐dopant benzyl viologen into the BHJ further boosted the PCE of the ITO/Cl‐2PACz cells to a maximum value of 18.9%, a record‐breaking value for SAM‐based OPVs and on par with the best‐performing OPVs reported to date. -
Four new donor-acceptor-acceptor' (D-A-A')-configured donors, CPNT, DCPNT, CPNBT, and DCPNBT equipped with naphtho[1,2-c:5,6-c']bis([1,2,5]-thiadiazole) (NT) or naphtho[2,3-c][1,2,5]thiadiazole (NBT) as the central acceptor (A) unit bridging triarylamine donor (D) and cyano or dicyanovinylene acceptor (A'), were synthesized and characterized. All molecules exhibit bathochromic absorption shifts as compared to those of the benzothiadiazole (BT)-based analogues owing to improved electron-withdrawing and quinoidal character of NT and NBT cores that lead to stronger intramolecular charge transfer. Favorable energy level alignments with C70 , together with the good thermal stability and the antiparallel dimeric packing render CPNT and DCPNT suitable donors for vacuum-processed organic photovoltaics (OPV)s. OPVs based on DCPNT : C70 active layers displayed the best power conversion efficiency (PCE)=8.3%, along with an open circuit voltage of 0.92 V, a short circuit current of 14.5 mA cm-2 and a fill factor of 62% under 1 sun intensity, simulated AM1.5G illumination. Importantly, continuous light-soaking with AM 1.5G illumination has verified the durability of the devices based on CPNT:C70 and DCPNT : C70 as the active blends. The devices were examined for their feasibility of indoor light harvesting under 500 lux illumination by a TLD-840 fluorescent lamp, giving PCE=12.8% and 12.6%, respectively. These results indicate that the NT-based D-A-A'-type donors CPNT and DCPNT are potential candidates for high-stability vacuum-processed OPVs suitable for indoor energy harvesting.more » « less
-
Abstract Recently, a new type of active layer with a ternary system has been developed to further enhance the performance of binary system organic photovoltaics (OPV). In the ternary OPV, almost all active layers are formed by simple ternary blend in solution, which eventually leads to the disordered bulk heterojunction (BHJ) structure after a spin‐coating process. There are two main restrictions in this disordered BHJ structure to obtain higher performance OPV. One is the isolated second donor or acceptor domains. The other is the invalid metal–semiconductor contact. Herein, the concept and design of donor/acceptor/acceptor ternary OPV with more controlled structure (C‐ternary) is reported. The C‐ternary OPV is fabricated by a sequential solution process, in which the second acceptor and donor/acceptor binary blend are sequentially spin‐coated. After the device optimization, the power conversion efficiencies (PCEs) of all OPV with C‐ternary are enhanced by 14–21% relative to those with the simple ternary blend; the best PCEs are 10.7 and 11.0% for fullerene‐based and fullerene‐free solar cells, respectively. Moreover, the averaged PCE value of 10.4% for fullerene‐free solar cell measured in this study is in great agreement with the certified one of 10.32% obtained from Newport Corporation.
-
Abstract Understanding chemical degradation at the interface between different layers in an organic photovoltaic device (OPV) is crucial to improving the long‐term stability of OPVs. Herein, molecular‐level insights are provided into the impact of different metal top electrodes on the interfacial morphology and stability of photoactive layers in PM6:Y6 bulk‐heterojunction (BHJ) OPVs. OPVs with an aluminum (Al) top electrode exhibit inferior stability compared to silver (Ag) electrode devices upon thermal annealing, whereby thermal stress induces the diffusion of both Al and Ag atoms to the PM6:Y6 BHJ layer. The diffused Al atoms cause surface recombination at the interface between the photoactive layer and an interlayer. Specifically, X‐ray photoelectron spectroscopy suggests the different local chemical environments of PM6 and Y6 moieties in PM6:Y6/Al‐contact devices. These results are corroborated by solid‐state nuclear magnetic resonance and electron paramagnetic resonance spectroscopy measurements, indicating the formation of ionic and organo‐metallic‐like species at the sub‐layers of the PM6:Y6 BHJ morphology, which are estimated to be less than 5 wt% of the PM6:Y6/Al blend. By comparison, the Ag atoms do not adversely affect PM6:Y6 BHJ morphology and the associated device physics. The investigation of reactive electrode‐BHJ interfaces by multiscale characterization techniques and device physics is expected to provide guidance to future interfacial engineering strategies to develop stable and efficient OPVs.
-
Abstract Incorporating narrow‐bandgap near‐infrared absorbers as the third component in a donor/acceptor binary blend is a new strategy to improve the power conversion efficiency (PCE) of organic photovoltaics (OPV). However, there are two main restrictions: potential charge recombination in the narrow‐gap material and miscompatibility between each component. The optimized design is to employ a third component (structurally similar to the donor or acceptor) with a lowest unoccupied molecular orbital (LUMO) energy level similar to the acceptor and a highest occupied molecular orbital (HOMO) energy level similar to the donor. In this design, enhanced absorption of the active layer and enhanced charge transfer can be realized without breaking the optimized morphology of the active layer. Herein, in order to realize this design, two new narrow‐bandgap nonfullerene acceptors with suitable energy levels and chemical structures are designed, synthesized, and employed as the third component in the donor/acceptor binary blend, which boosts the PCE of OPV to 11.6%.