skip to main content


Title: Corrugation-driven symmetry breaking in magic-angle twisted bilayer graphene
Abstract

The discovery of unconventional superconductivity in magic-angle twisted bilayer graphene (tBLG) supported the twist-angle-induced flat band structure predictions made a decade earlier. Numerous physical properties have since been linked to the interlayer twist angle using the flat band prediction as a guideline. However, some key observations like the nematic phase and striped charge order behind the superconductivity are missing in this initial model. Here we show that a thermodynamically stable large out-of-plane displacement, or corrugation of the bilayer, induced by the interlayer twist, demonstrates partially filled states of the flat band structure, accompanied by a broken symmetry, in the magic-angle regime and the presence of symmetry breaking associated with the superconductivity in tBLG. The distinction between low and high corrugation can also explain the observed evolution of the vibrational spectra of tBLG as a function of twist angle. Our observation that large out-of-plane deformation modes enable partial filling of states near the Fermi energy may lead to a strategy for offsetting the effects of disorder in the local twist angle, which suppresses unconventional superconductivity and correlated insulator behavior in magic-angle tBLG.

 
more » « less
Award ID(s):
1720633
NSF-PAR ID:
10372827
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Physics
Volume:
5
Issue:
1
ISSN:
2399-3650
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Van der Waals heterojunctions of two-dimensional transition-metal dichalcogenides are intensely investigated for multiple optoelectronics applications. Strong and adjustable interactions between layers can influence the charge and energy flow that govern material performance. We report ab initio quantum molecular dynamics investigation of the influence of the bilayer twist angle on charge transfer and recombination in MoS 2 /WS 2 heterojunctions, including high-symmetry 0° and 60° configurations, and low symmetry 9.43° and 50.57° structures with Moiré patterns. The twist angle modulates interlayer coupling, as evidenced by changes in the interlayer distance, electron-vibrational interactions, and spectral shifts in the out-of-plane vibrational frequencies. Occurring on a femtosecond timescale, the hole transfer depends weakly on the twist angle and is ultrafast due to high density of acceptor states and large nonadiabatic coupling. In contrast, the electron–hole recombination takes nanoseconds and varies by an order of magnitude depending on the twist angle. The recombination is slow because it occurs across a large energy gap. It depends on the twist angle because the nonadiabatic coupling is sensitive to the interlayer distance and overlap of electron and hole wavefunctions. The Moiré pattern systems exhibit weaker interlayer interaction, generating longer-lived charges. Both charge separation and recombination are driven by out-of-plane vibrational motions. The simulations rationalize the experimental results on the influence of the bilayer twist angle on the charge separation and recombination. The atomistic insights provide theoretical guidance for design of high-performance optoelectronic devices based on 2D van der Waals heterostructures. 
    more » « less
  2. Recent discoveries in twisted heterostructure materials have opened research directions in classical wave systems. This Letter investigates a family of double-sided pillared phononic crystal plates as the elastodynamic analog of bilayer graphene, including twisted bilayer graphene. The phononic crystal plate design is first validated by studying the basic AA- and AB-stack configurations under weak interlayer coupling. A specific commensurate twist angle giving rise to the sublattice exchange even symmetry is then studied to examine the twist-modulated band structure. Finally, this study demonstrates that the same twist angle, in concert with an ultra-strong interlayer coupling, can collectively create valley-dependent edge states that have not been previously observed in electronic bilayer graphene. 
    more » « less
  3. Abstract

    Moiré superlattices created by the twisted stacking of two-dimensional crystals can host electronic bands with flat energy dispersion in which enhanced interactions promote correlated electron states. The twisted double bilayer graphene (TDBG), where two Bernal bilayer graphene are stacked with a twist angle, is such a moiré system with tunable flat bands. Here, we use gate-tuned scanning tunneling spectroscopy to directly demonstrate the tunability of the band structure of TDBG with an electric field and to show spectroscopic signatures of electronic correlations and topology for its flat band. Our spectroscopic experiments are in agreement with a continuum model of TDBG band structure and reveal signatures of a correlated insulator gap at partial filling of its isolated flat band. The topological properties of this flat band are probed with the application of a magnetic field, which leads to valley polarization and the splitting of Chern bands with a large effective g-factor.

     
    more » « less
  4. Engineering moiré superlattices by twisting layers in van der Waals (vdW) heterostructures has uncovered a wide array of quantum phenomena. We constructed a vdW heterostructure that consists of three graphene layers stacked with alternating twist angles ±θ. At the average twist angle θ ~ 1.56°, a theoretically predicted “magic angle” for the formation of flat electron bands, we observed displacement field–tunable superconductivity with a maximum critical temperature of 2.1 kelvin. By tuning the doping level and displacement field, we found that superconducting regimes occur in conjunction with flavor polarization of moiré bands and are bounded by a van Hove singularity (vHS) at high displacement fields. Our findings display inconsistencies with a weak coupling description, suggesting that the observed moiré superconductivity has an unconventional nature.

     
    more » « less
  5. Controlling the strength of interactions is essential for studying quantum phenomena emerging in systems of correlated fermions. We introduce a device geometry whereby magic-angle twisted bilayer graphene is placed in close proximity to a Bernal bilayer graphene, separated by a 3-nanometer-thick barrier. By using charge screening from the Bernal bilayer, the strength of electron-electron Coulomb interaction within the twisted bilayer can be continuously tuned. Transport measurements show that tuning Coulomb screening has opposite effects on the insulating and superconducting states: As Coulomb interaction is weakened by screening, the insulating states become less robust, whereas the stability of superconductivity at the optimal doping is enhanced. The results provide important constraints on theoretical models for understanding the mechanism of superconductivity in magic-angle twisted bilayer graphene.

     
    more » « less