skip to main content

Title: Corrugation-driven symmetry breaking in magic-angle twisted bilayer graphene

The discovery of unconventional superconductivity in magic-angle twisted bilayer graphene (tBLG) supported the twist-angle-induced flat band structure predictions made a decade earlier. Numerous physical properties have since been linked to the interlayer twist angle using the flat band prediction as a guideline. However, some key observations like the nematic phase and striped charge order behind the superconductivity are missing in this initial model. Here we show that a thermodynamically stable large out-of-plane displacement, or corrugation of the bilayer, induced by the interlayer twist, demonstrates partially filled states of the flat band structure, accompanied by a broken symmetry, in the magic-angle regime and the presence of symmetry breaking associated with the superconductivity in tBLG. The distinction between low and high corrugation can also explain the observed evolution of the vibrational spectra of tBLG as a function of twist angle. Our observation that large out-of-plane deformation modes enable partial filling of states near the Fermi energy may lead to a strategy for offsetting the effects of disorder in the local twist angle, which suppresses unconventional superconductivity and correlated insulator behavior in magic-angle tBLG.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Physics
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. At partial fillings of its flat electronic bands, magic-angle twisted bilayer graphene (MATBG) hosts a rich variety of competing correlated phases that show sample-to-sample variations. Divergent phase diagrams in MATBG are often attributed to the sublattice polarization energy scale, tuned by the degree of alignment of the hexagonal boron nitride (hBN) substrates typically used in van der Waals devices. Unaligned MATBG exhibits unconventional superconductor and correlated insulator phases, while nearly perfectly aligned MATBG/hBN exhibits zero-field Chern insulating phases and lacks superconductivity. Here we use scanning tunneling microscopy and spectroscopy (STM/STS) to observe gapped phases at partial fillings of the flat bands of MATBG in a new intermediate regime of sublattice polarization, observed when MATBG is only partially aligned (θGr-hBN ≈ 1.65°) to the underlying hBN substrate. Under this condition, MATBG hosts not only phenomena that naturally interpolate between the two sublattice potential limits, but also unexpected gapped phases absent in either of these limits. At charge neutrality, we observe an insulating phase with a small energy gap (Δ < 5 meV) likely related to weak sublattice symmetry breaking from the hBN substrate. In addition, we observe new gapped phases near fractional fillings ν = ±1/3 and ν = ±1/6, which have not been previously observed in MATBG. Importantly, energy-resolved STS unambiguously identifies these fractional filling states to be of single-particle origin, possibly a result of the super-superlattice formed by two moiré superlattices. Our observations emphasize the power of STS in distinguishing single-particle gapped phases from many-body gapped phases in situations that could be easily confused in electrical transport measurements, and demonstrate the use of substrate engineering for modifying the electronic structure of a moiré flat-band material. 
    more » « less
  2. Van der Waals heterojunctions of two-dimensional transition-metal dichalcogenides are intensely investigated for multiple optoelectronics applications. Strong and adjustable interactions between layers can influence the charge and energy flow that govern material performance. We report ab initio quantum molecular dynamics investigation of the influence of the bilayer twist angle on charge transfer and recombination in MoS 2 /WS 2 heterojunctions, including high-symmetry 0° and 60° configurations, and low symmetry 9.43° and 50.57° structures with Moiré patterns. The twist angle modulates interlayer coupling, as evidenced by changes in the interlayer distance, electron-vibrational interactions, and spectral shifts in the out-of-plane vibrational frequencies. Occurring on a femtosecond timescale, the hole transfer depends weakly on the twist angle and is ultrafast due to high density of acceptor states and large nonadiabatic coupling. In contrast, the electron–hole recombination takes nanoseconds and varies by an order of magnitude depending on the twist angle. The recombination is slow because it occurs across a large energy gap. It depends on the twist angle because the nonadiabatic coupling is sensitive to the interlayer distance and overlap of electron and hole wavefunctions. The Moiré pattern systems exhibit weaker interlayer interaction, generating longer-lived charges. Both charge separation and recombination are driven by out-of-plane vibrational motions. The simulations rationalize the experimental results on the influence of the bilayer twist angle on the charge separation and recombination. The atomistic insights provide theoretical guidance for design of high-performance optoelectronic devices based on 2D van der Waals heterostructures. 
    more » « less
  3. Abstract

    In recent years, correlated insulating states, unconventional superconductivity, and topologically non-trivial phases have all been observed in several moiré heterostructures. However, understanding of the physical mechanisms behind these phenomena is hampered by the lack of local electronic structure data. Here, we use scanning tunnelling microscopy and spectroscopy to demonstrate how the interplay between correlation, topology, and local atomic structure determines the behaviour of electron-doped twisted monolayer–bilayer graphene. Through gate- and magnetic field-dependent measurements, we observe local spectroscopic signatures indicating a quantum anomalous Hall insulating state with a total Chern number of ±2 at a doping level of three electrons per moiré unit cell. We show that the sign of the Chern number and associated magnetism can be electrostatically switched only over a limited range of twist angle and sample hetero-strain values. This results from a competition between the orbital magnetization of filled bulk bands and chiral edge states, which is sensitive to strain-induced distortions in the moiré superlattice.

    more » « less
  4. Recent discoveries in twisted heterostructure materials have opened research directions in classical wave systems. This Letter investigates a family of double-sided pillared phononic crystal plates as the elastodynamic analog of bilayer graphene, including twisted bilayer graphene. The phononic crystal plate design is first validated by studying the basic AA- and AB-stack configurations under weak interlayer coupling. A specific commensurate twist angle giving rise to the sublattice exchange even symmetry is then studied to examine the twist-modulated band structure. Finally, this study demonstrates that the same twist angle, in concert with an ultra-strong interlayer coupling, can collectively create valley-dependent edge states that have not been previously observed in electronic bilayer graphene. 
    more » « less
  5. Abstract

    Lattice reconstruction and corresponding strain accumulation plays a key role in defining the electronic structure of two-dimensional moiré superlattices, including those of transition metal dichalcogenides (TMDs). Imaging of TMD moirés has so far provided a qualitative understanding of this relaxation process in terms of interlayer stacking energy, while models of the underlying deformation mechanisms have relied on simulations. Here, we use interferometric four-dimensional scanning transmission electron microscopy to quantitatively map the mechanical deformations through which reconstruction occurs in small-angle twisted bilayer MoS2and WSe2/MoS2heterobilayers. We provide direct evidence that local rotations govern relaxation for twisted homobilayers, while local dilations are prominent in heterobilayers possessing a sufficiently large lattice mismatch. Encapsulation of the moiré layers in hBN further localizes and enhances these in-plane reconstruction pathways by suppressing out-of-plane corrugation. We also find that extrinsic uniaxial heterostrain, which introduces a lattice constant difference in twisted homobilayers, leads to accumulation and redistribution of reconstruction strain, demonstrating another route to modify the moiré potential.

    more » « less