skip to main content

Title: Retrieval and Evaluation of Ice Water Content from the Airborne Wyoming Cloud Radar in Orographic Wintertime Clouds during SNOWIE
Abstract

As part of the analysis following the Seeded and Natural Orographic Wintertime Storms (SNOWIE) project, the ice water content (IWC) in ice and mixed-phase clouds is retrieved from airborne Wyoming Cloud Radar (WCR) measurements aboard the University of Wyoming King Air (UWKA), which has a suite of integrated in situ IWC, optical array probes, and remote sensing measurements, and it provides a unique dataset for this algorithm development and evaluation. A sensitivity study with different idealized ice particle habits shows that the retrieved IWC with aggregate ice particle habit agrees the best with the in situ measurement, especially in ice or ice-dominated mixed-phase clouds with a correlation coefficient (rr) of 0.91 and a bias of close to 0. For mixed-phase clouds with ice fraction ratio less than 0.8, the variances of IWC estimates increase (rr = 0.76) and the retrieved mean IWC is larger than in situ IWC by a factor of 2. This is found to be related to the uncertainty of in situ measurements, the large cloud inhomogeneity, and the retrieval assumption uncertainty. The simulated reflectivity Ze and IWC relationships assuming three idealized ice particle habits and measured particle size distributions show that hexagonal columns with the more » same Ze have a lower IWC than aggregates, whose Ze–IWC relation is more consistent with the observed WCR Ze and in situ IWC relation in those clouds. The 2D stereo probe (2DS) images also indicate that ice particle habit transition occurs in orographic mixed-phase clouds; hence, the retrieved IWC assuming modified gamma particle size distribution (PSD) of aggregate particles tends to have a greater bias in this kind of clouds.

« less
Authors:
 ;  ;  ;  ;  ;  ;  
Award ID(s):
2016077
Publication Date:
NSF-PAR ID:
10372946
Journal Name:
Journal of Atmospheric and Oceanic Technology
Volume:
39
Issue:
2
Page Range or eLocation-ID:
p. 207-221
ISSN:
0739-0572
Publisher:
American Meteorological Society
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Aerosols affect cirrus formation and evolution, yet quantificationof these effects remain difficult based on in situ observations due to thecomplexity of nucleation mechanisms and large variabilities in icemicrophysical properties. This work employed a method to distinguish fiveevolution phases of cirrus clouds based on in situ aircraft-basedobservations from seven U.S. National Science Foundation (NSF) and five NASAflight campaigns. Both homogeneous and heterogeneous nucleation werecaptured in the 1 Hz aircraft observations, inferred from the distributionsof relative humidity in the nucleation phase. Using linear regressions toquantify the correlations between cirrus microphysical properties andaerosol number concentrations, we found that ice water content (IWC) and icecrystal number concentration (Ni) show strong positive correlations withlarger aerosols (>500 nm) in the nucleation phase, indicatingstrong contributions of heterogeneous nucleation when ice crystals firststart to nucleate. For the later growth phase, IWC and Ni show similarpositive correlations with larger and smaller (i.e., >100 nm)aerosols, possibly due to fewer remaining ice-nucleating particles in thelater growth phase that allows more homogeneous nucleation to occur. Both200 m and 100 km observations were compared with the nudged simulations fromthe National Center for Atmospheric Research (NCAR) Community AtmosphereModel version 6 (CAM6). Simulated aerosol indirect effects are weaker thanthe observations for both larger and smaller aerosols for in situ cirrus,whilemore »the simulated aerosol indirect effects are closer to observations inconvective cirrus. The results also indicate that simulations overestimatehomogeneous freezing, underestimate heterogeneous nucleation andunderestimate the continuous formation and growth of ice crystals as cirrusclouds evolve. Observations show positive correlations of IWC, Ni and icecrystal mean diameter (Di) with respect to Na in both the Northern and SouthernHemisphere (NH and SH), while the simulations show negative correlations inthe SH. The observations also show higher increases of IWC and Ni in the SHunder the same increase of Na than those shown in the NH, indicating highersensitivity of cirrus microphysical properties to increases of Na in the SHthan the NH. The simulations underestimate IWC by a factor of 3–30 in theearly/later growth phase, indicating that the low bias of simulated IWC wasdue to insufficient continuous ice particle formation and growth. Sucha hypothesis is consistent with the model biases of lower frequencies of icesupersaturation and lower vertical velocity standard deviation in theearly/later growth phases. Overall, these findings show that aircraftobservations can capture both heterogeneous and homogeneous nucleation, andtheir contributions vary as cirrus clouds evolve. Future model developmentis also recommended to evaluate and improve the representation of watervapor and vertical velocity on the sub-grid scale to resolve theinsufficient ice particle formation and growth after the initial nucleationevent.« less
  2. Aerosols affect cirrus formation and evolution, yet quantification of these effects remain difficult based on in-situ observations due to the complexity of nucleation mechanisms and large variabilities in ice microphysical properties. This work employed a method to distinguish five evolution phases of cirrus clouds based on in-situ aircraft-based observations from seven U.S. National Science Foundation (NSF) and five NASA flight campaigns. Both homogeneous and heterogeneous nucleation were captured in the 1-Hz aircraft observations, inferred from the distributions of relative humidity in the nucleation phase. Using linear regressions to quantify the correlations between cirrus microphysical properties and aerosol number concentrations, we found that ice water content (IWC) and ice crystal number concentration (Ni) show strong positive correlations with larger aerosols (> 500 nm) in the nucleation phase, indicating strong contributions of heterogeneous nucleation when ice crystals first start to nucleate. For the later growth phase, IWC and Ni show similar positive correlations with larger and smaller (i.e., > 100 nm) aerosols, possibly due to fewer remaining ice nucleating particles in the later growth phase that allows more homogeneous nucleation to occur. Both 200-m and 100-km observations were compared with the nudged simulations from the National Center for Atmospheric Research (NCAR) Communitymore »Atmosphere Model version 6 (CAM6). Simulated aerosol indirect effects are weaker than the observations for both larger and smaller aerosols. Observations show stronger aerosol indirect effects (i.e., positive correlations between IWC, Ni and Na) in the Southern Hemisphere (SH) compared with the Northern Hemisphere (NH), while the simulations show negative correlations in the SH. The simulations underestimate IWC by a factor of 3 – 30 in the early/later growth phase, indicating that the low bias of simulated IWC was due to insufficient ice particle growth. Such hypothesis is consistent with the model biases of lower frequencies of ice supersaturation and lower vertical velocity standard deviation in the early/later growth phases. Overall, these findings show that aircraft observations can capture the competitions between heterogeneous and homogeneous nucleation, and their contributions vary as cirrus clouds evolve. Future model development is also recommended to evaluate and improve the representation of water vapor and vertical velocity on the sub-grid scale to resolve the insufficient ice particle growth.« less
  3. Abstract

    During the summer of 2018, the upward-pointing Wyoming Cloud Lidar (WCL) was deployed on board the University of Wyoming King Air (UWKA) research aircraft for the Biomass Burning Flux Measurements of Trace Gases and Aerosols (BB-FLUX) field campaign. This paper describes the generation of calibrated attenuated backscatter coefficients and aerosol extinction coefficients from the WCL measurements. The retrieved aerosol extinction coefficients at the flight level strongly correlate (correlation coefficient, rr > 0.8) with in situ aerosol concentration and carbon monoxide (CO) concentration, providing a first-order estimate for converting WCL extinction coefficients into vertically resolved CO and aerosol concentration within wildfire smoke plumes. The integrated CO column concentrations from the WCL data in nonextinguished profiles also correlate (rr = 0.7) with column measurements by the University of Colorado Airborne Solar Occultation Flux instrument, indicating the validity of WCL-derived extinction coefficients. During BB-FLUX, the UWKA sampled smoke plumes from more than 20 wildfires during 35 flights over the western United States. Seventy percent of flight time was spent below 3 km above ground level (AGL) altitude, although the UWKA ascended up to 6 km AGL to sample the top of some deep smoke plumes. The upward-pointing WCL observed a nearly equalmore »amount of thin and dense smoke below 2 km and above 5 km due to the flight purpose of targeted fresh fire smoke. Between 2 and 5 km, where most of the wildfire smoke resided, the WCL observed slightly more thin smoke than dense smoke due to smoke spreading. Extinction coefficients in dense smoke were 2–10 times stronger, and dense smoke tended to have larger depolarization ratio, associated with irregular aerosol particles.

    « less
  4. This paper addresses issues of statistical misrepresentation of the a priori parameters (henceforth called ancillary parameters) used in geophysical data estimation. Parameterizations using ancillary data are frequently needed to derive geophysical data of interest from remote measurements. Empirical fits to the ancillary data that do not preserve the distribution of such data may induce substantial bias. A semianalytical averaging approach based on Taylor expansion is presented to improve estimated cirrus ice water content and sedimentation flux for a range of volume extinction coefficients retrieved from spaceborne lidar observations by CALIOP combined with the estimated distribution of ancillary data from in situ aircraft measurements of ice particle microphysical parameters and temperature. It is shown that, given an idealized distribution of input parameters, the approach performs well against Monte Carlo benchmark predictions. Using examples with idealized distributions at the mean temperature for the tropics at 15 km, it is estimated that the commonly neglected variance observed in in situ measurements of effective diameters may produce a worst-case estimation bias spanning up to a factor of 2. For ice sedimentation flux, a similar variance in particle size distributions and extinctions produces a worst-case estimation bias of a factor of 9. The value ofmore »the bias is found to be mostly set by the correlation coefficient between extinction and ice effective diameter, which in this test ranged between all possible values. Systematic reporting of variances and covariances in the ancillary data and between data and observed quantities would allow for more accurate observational estimates.

    « less
  5. Abstract. Improvements to climate model results in polar regions require improvedknowledge of cloud properties. Surface-based infrared (IR) radiancespectrometers have been used to retrieve cloud properties in polar regions,but measurements are sparse. Reductions in cost and power requirements toallow more widespread measurements could be aided by reducing instrumentresolution. Here we explore the effects of errors and instrument resolutionon cloud property retrievals from downwelling IR radiances for resolutionsof 0.1 to 20 cm−1. Retrievals are tested on 336 radiance simulationscharacteristic of the Arctic, including mixed-phase, verticallyinhomogeneous, and liquid-topped clouds and a variety of ice habits.Retrieval accuracy is found to be unaffected by resolution from 0.1 to 4 cm−1, after which it decreases slightly. When cloud heights areretrieved, errors in retrieved cloud optical depth (COD) and ice fractionare considerably smaller for clouds with bases below 2 km than for higherclouds. For example, at a resolution of 4 cm−1, with errors imposed(noise and radiation bias of 0.2 mW/(m2 sr cm−1) and biases intemperature of 0.2 K and in water vapor of −3 %), using retrieved cloudheights, root-mean-square errors decrease from 1.1 to 0.15 for COD, 0.3 to0.18 for ice fraction (fice), and 10 to 7 µm for iceeffective radius (errors remain at 2 µm for liquid effective radius).These results indicate that a moderately low-resolution, surface-based IRspectrometermore »could provide cloud property retrievals with accuracycomparable to existing higher-resolution instruments and that such aninstrument would be particularly useful for low-level clouds.« less