skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bioinspired Asymmetric Total Synthesis of Emeriones A–C**
Abstract We report asymmetric bioinspired total syntheses of the fungal metabolites emeriones A–C via stereoselective oxidations of two bicyclo[4.2.0]octadiene diastereomers. The central bicyclic scaffolds are prepared in an 8π/6π electrocyclization cascade of a stereodefined pentaene, which contains the fully assembled side chains of the emeriones. The anti‐aldol side chain is made using a Paterson‐aldol addition, and the epoxide of the dioxabicyclo[3.1.0]hexane side chain via ring‐closure onto an oxidized acetal. Our work has enabled the structural revision of emerione C, and resulted in the synthesis of a “missing” family member, which we call emerione D. DFT calculations identified two methyl groups that govern torquoselectivity in the 8π/6π cascade.  more » « less
Award ID(s):
1764328 2153972
PAR ID:
10373020
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
61
Issue:
32
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The combination of electrocyclizations and cycloadditions accounts for the formation of a range of fascinating natural products. Cascades consisting of 8π electrocyclizations followed by a 6π electrocyclization and a cycloaddition are relatively common. We now report the synthesis of the tetramic acid PF‐1018 through an 8π electrocyclization, the product of which is immediately intercepted by a Diels–Alder cycloaddition. The success of this pericyclic cascade was critically dependent on the substitution pattern of the starting polyene and could be rationalized through DFT calculations. The completion of the synthesis required the instalment of a trisubstituted double bond by radical deoxygenation. An unexpected side product formed through 4‐exo‐trig radical cyclization could be recycled through an unprecedented triflation/fragmentation. 
    more » « less
  2. A metal-free aromatic cascade has been developed for the synthesis of diverse heterocycles from readily accessible hydroxy/aminochalcones and acid/alkyl halides. The cascade is initiated by a base-mediated intramolecular aldol cyclization/dehydration sequence to provide a triene, which sets the stage for a 6π-electrocyclization/oxidative aromatization to access diverse heterocyclic scaffolds. 
    more » « less
  3. A chiral tricyclic terpene possessing a 6,6,6-tricyclic framework and a 3,3-dimethyl-7-oxooctylidenyl side chain undergoes a double ring-closing reaction to give two chiral pentacyclic terpenes in a ratio of 4:3 via an intramolecular Michael addition followed by aldol condensation under basic conditions. Three new stereogenic centers are introduced in the initial Michael annulation reaction. Stereoselective installation of an ethoxycarbonyl group at C17 of the two pentacyclic terpenes separately gives the corresponding highly functionalized pentacyclic terpenoids with seven stereogenic centers. The structures and stereochemistry of key intermediates and products are established through X-ray crystallographic analysis. A mechanism is proposed for explaining the stereochemistry in the Michael annulation reaction. 
    more » « less
  4. We present a six-step cascade that converts 1,3-distyrylbenzenes (bis-stilbenes) into nonsymmetric pyrenes in 40–60% yields. This sequence merges photochemical steps, E,Z-alkene isomerization, a 6π photochemical electrocyclization (Mallory photocyclization); the new bay region cyclization, with two radical iodine-mediated aromatization steps; and an optional aryl migration. This work illustrates how the inherent challenges of engineering excited state reactivity can be addressed by logical design. An unusual aspect of this cascade is that the same photochemical process (the Mallory reaction) is first promoted and then blocked in different stages within a photochemical cascade. The use of blocking groups is the key feature that makes simple bis-stilbenes suitable substrates for directed double cyclization. While the first stilbene subunit undergoes a classic Mallory photocyclization to form a phenanthrene intermediate, the next ring-forming step is diverted from the conventional Mallory path into a photocyclization of the remaining alkene at the phenanthrene’s bay region. Although earlier literature suggested that this reaction is unfavorable, we achieved this diversion via incorporation of blocking groups to prevent the Mallory photocyclization. The two photocyclizations are assisted by the relief of the excited state antiaromaticity. Reaction selectivity is controlled by substituent effects and the interplay between photochemical and radical reactivity. Furthermore, the introduction of donor substituents at the pendant styrene group can further extend this photochemical cascade through a radical 1,2-aryl migration. Rich photophysical and supramolecular properties of the newly substituted pyrenes illustrate the role of systematic variations in the structure of this classic chromophore for excited state engineering. 
    more » « less
  5. Schomaker, Jennifer (Ed.)
    This study introduces a cascade approach that proceeds with an N–H insertion into an enynal-derived zinc–carbenoid, followed by an intramolecular aldol reaction to provide (2-furyl)-2-pyrrolidines with high diastereoselectivity (dr ≥ 98:2). 
    more » « less