Benchmark brown dwarf companions with well-determined ages and model-independent masses are powerful tools to test substellar evolutionary models and probe the formation of giant planets and brown dwarfs. Here, we report the independent discovery of HIP 21152 B, the first imaged brown dwarf companion in the Hyades, and conduct a comprehensive orbital and atmospheric characterization of the system. HIP 21152 was targeted in an ongoing high-contrast imaging campaign of stars exhibiting proper-motion changes between Hipparcos and Gaia, and was also recently identified by Bonavita et al. (2022) and Kuzuhara et al. (2022). Our Keck/NIRC2 and SCExAO/CHARIS imaging of HIP 21152 revealed a comoving companion at a separation of 0.″37 (16 au). We perform a joint orbit fit of all available relative astrometry and radial velocities together with the Hipparcos-Gaia proper motions, yielding a dynamical mass of
As part of a comprehensive effort to characterize the nearest stars, the CHIRON echelle spectrograph on the CTIO/SMARTS 1.5 m telescope is being used to acquire high-resolution (
- Publication Date:
- NSF-PAR ID:
- 10373022
- Journal Name:
- The Astronomical Journal
- Volume:
- 164
- Issue:
- 5
- Page Range or eLocation-ID:
- Article No. 174
- ISSN:
- 0004-6256
- Publisher:
- DOI PREFIX: 10.3847
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract , which is 1–2σ lower than evolutionary model predictions. Hybrid grids that include the evolution of cloud properties best reproduce the dynamical mass. We also identify a comoving wide-separation (1837″ or 7.9 × 104au) early-L dwarf with an inferred mass near the hydrogen-burning limit. Finally, we analyze the spectra and photometry of HIP 21152 B using the Saumon & Marley (2008)more » -
Abstract We use ALMA observations of CO(2–1) in 13 massive (
M *≳ 1011M ⊙) poststarburst galaxies atz ∼ 0.6 to constrain the molecular gas content in galaxies shortly after they quench their major star-forming episode. The poststarburst galaxies in this study are selected from the Sloan Digital Sky Survey spectroscopic samples (Data Release 14) based on their spectral shapes, as part of the Studying QUenching at Intermediate-z Galaxies: Gas, angu momentum, and Evolution ( ) program. Early results showed that two poststarburst galaxies host large H2reservoirs despite their low inferred star formation rates (SFRs). Here we expand this analysis to a larger statistical sample of 13 galaxies. Six of the primary targets (45%) are detected, withM ⊙. Given their high stellar masses, this mass limit corresponds to an average gas fraction of or ∼14% using lower stellar masses estimates derived from analytic, exponentially declining star formation histories. The gas fraction correlates with theD n 4000 spectral index, suggesting that the cold gas reservoirs decrease with time since burst, as found in local K+A galaxies. Star formation histories derived from flexible stellar population synthesis modeling support thismore » -
Abstract We present observations of the dwarf galaxies GALFA Dw3 and GALFA Dw4 with the Advanced Camera for Surveys on the Hubble Space Telescope. These galaxies were initially discovered as optical counterparts to compact H
i clouds in the GALFA survey. Both objects resolve into stellar populations which display old red giant branch (RGB), younger helium-burning, and massive main sequence stars. We use the tip of the RGB method to determine the distance to each galaxy, finding distances of Mpc and Mpc, respectively. With these distances we show that both galaxies are extremely isolated, with no other confirmed objects within ∼1.5 Mpc of either dwarf. GALFA Dw4 is also found to be unusually compact for a galaxy of its luminosity. GALFA Dw3 and Dw4 contain Hii regions with young star clusters and an overall irregular morphology; they show evidence of ongoing star formation through both ultraviolet and Hα observations and are therefore classified as dwarf irregulars (dIrrs). The star formation histories of these two dwarfs show distinct differences: Dw3 shows signs of a recently ceased episode of active star formation across the entire dwarf, while Dw4 shows some evidence for current star formation in spatially limited Hii regions. Compact Hi sources offermore » -
Abstract We present a chemodynamical study of the Grus I ultra-faint dwarf galaxy (UFD) from medium-resolution (
R ∼ 11,000) Magellan/IMACS spectra of its individual member stars. We identify eight confirmed members of Grus I, based on their low metallicities and coherent radial velocities, and four candidate members for which only velocities are derived. In contrast to previous work, we find that Grus I has a very low mean metallicity of 〈[Fe/H]〉 = −2.62 ± 0.11 dex, making it one of the most metal-poor UFDs. Grus I has a systemic radial velocity of −143.5 ± 1.2 km s−1and a velocity dispersion of km s−1, which results in a dynamical mass ofM ⊙and a mass-to-light ratio ofM/L V =M ⊙/L ⊙. Under the assumption of dynamical equilibrium, our analysis confirms that Grus I is a dark-matter-dominated UFD (M/L > 80M ⊙/L ⊙). However, we do not resolve a metallicity dispersion (σ [Fe/H]< 0.44 dex). Our results indicate that Grus I is a fairly typical UFD with parameters that agree with mass–metallicity and metallicity-luminosity trends for faint galaxies. This agreement suggests that Grus I has not lost an especially significant amount of mass from tidal encounters with the Milky Way, in linemore » -
Abstract We discuss five blue stellar systems in the direction of the Virgo cluster, analogous to the enigmatic object SECCO 1 (AGC 226067). These objects were identified based on their optical and UV morphology and followed up with H
i observations with the Very Large Array (and Green Bank Telescope), Multi Unit Spectroscopic Explorer (on the Very Large Telescope) optical spectroscopy, and Hubble Space Telescope imaging. These new data indicate that one system is a distant group of galaxies. The remaining four are extremely low mass (M *∼ 105M ⊙), are dominated by young blue stars, have highly irregular and clumpy morphologies, are only a few kiloparsecs across, yet host an abundance of metal-rich, , Hii regions. These high metallicities indicate that these stellar systems formed from gas stripped from much more massive galaxies. Despite the young age of their stellar populations, only one system is detected in Hi , while the remaining three have minimal (if any) gas reservoirs. Furthermore, two systems are surprisingly isolated and have no plausible parent galaxy within ∼30′ (∼140 kpc). Although tidal stripping cannot be conclusively excluded as the formation mechanism of these objects, ram pressure stripping more naturally explains their properties, inmore »