skip to main content


Title: Regionalization in a Global Hydrologic Deep Learning Model: From Physical Descriptors to Random Vectors
Abstract

Streamflow prediction is a long‐standing hydrologic problem. Development of models for streamflow prediction often requires incorporation of catchment physical descriptors to characterize the associated complex hydrological processes. Across different scales of catchments, these physical descriptors also allow models to extrapolate hydrologic information from one catchment to others, a process referred to as “regionalization”. Recently, in gauged basin scenarios, deep learning models have been shown to achieve state of the art regionalization performance by building a global hydrologic model. These models predict streamflow given catchment physical descriptors and weather forcing data. However, these physical descriptors are by their nature uncertain, sometimes incomplete, or even unavailable in certain cases, which limits the applicability of this approach. In this paper, we show that by assigning a vector of random values as a surrogate for catchment physical descriptors, we can achieve robust regionalization performance under a gauged prediction scenario. Our results show that the deep learning model using our proposed random vector approach achieves a predictive performance comparable to that of the model using actual physical descriptors. The random vector approach yields robust performance under different data sparsity scenarios and deep learning model selections. Furthermore, based on the use of random vectors, high‐dimensional characterization improves regionalization performance in gauged basin scenario when physical descriptors are uncertain, or insufficient.

 
more » « less
Award ID(s):
1934721 1934548
NSF-PAR ID:
10373035
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
58
Issue:
8
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. As a genre of physics-informed machine learning, differentiable process-based hydrologic models (abbreviated as δ or delta models) with regionalized deep-network-based parameterization pipelines were recently shown to provide daily streamflow prediction performance closely approaching that of state-of-the-art long short-term memory (LSTM) deep networks. Meanwhile, δ models provide a full suite of diagnostic physical variables and guaranteed mass conservation. Here, we ran experiments to test (1) their ability to extrapolate to regions far from streamflow gauges and (2) their ability to make credible predictions of long-term (decadal-scale) change trends. We evaluated the models based on daily hydrograph metrics (Nash–Sutcliffe model efficiency coefficient, etc.) and predicted decadal streamflow trends. For prediction in ungauged basins (PUB; randomly sampled ungauged basins representing spatial interpolation), δ models either approached or surpassed the performance of LSTM in daily hydrograph metrics, depending on the meteorological forcing data used. They presented a comparable trend performance to LSTM for annual mean flow and high flow but worse trends for low flow. For prediction in ungauged regions (PUR; regional holdout test representing spatial extrapolation in a highly data-sparse scenario), δ models surpassed LSTM in daily hydrograph metrics, and their advantages in mean and high flow trends became prominent. In addition, an untrained variable, evapotranspiration, retained good seasonality even for extrapolated cases. The δ models' deep-network-based parameterization pipeline produced parameter fields that maintain remarkably stable spatial patterns even in highly data-scarce scenarios, which explains their robustness. Combined with their interpretability and ability to assimilate multi-source observations, the δ models are strong candidates for regional and global-scale hydrologic simulations and climate change impact assessment. 
    more » « less
  2. Machine Learning is beginning to provide state-of-the-art performance in a range of environmental applications such as streamflow prediction in a hydrologic basin. However, building accurate broad-scale models for streamflow remains challenging in practice due to the variability in the dominant hydrologic processes, which are best captured by sets of process-related basin characteristics. Existing basin characteristics suffer from noise and uncertainty, among many other things, which adversely impact model performance. To tackle the above challenges, in this paper, we propose a novel Knowledge-guided Self-Supervised Learning (KGSSL) inverse framework to extract system characteristics from driver(input) and response(output) data. This first-of-its-kind framework achieves robust performance even when characteristics are corrupted or missing. We evaluate the KGSSL framework in the context of stream flow modeling using CAMELS (Catchment Attributes and MEteorology for Large-sample Studies) which is a widely used hydrology benchmark dataset. Specifically, KGSSL outperforms baseline by 16% in predicting missing characteristics. Furthermore, in the context of forward modelling, KGSSL inferred characteristics provide a 35% improvement in performance over a standard baseline when the static characteristic are unknown. 
    more » « less
  3. Thenkabail, Prasad S. (Ed.)

    Physically based hydrologic models require significant effort and extensive information for development, calibration, and validation. The study explored the use of the random forest regression (RFR), a supervised machine learning (ML) model, as an alternative to the physically based Soil and Water Assessment Tool (SWAT) for predicting streamflow in the Rio Grande Headwaters near Del Norte, a snowmelt-dominated mountainous watershed of the Upper Rio Grande Basin. Remotely sensed data were used for the random forest machine learning analysis (RFML) and RStudio for data processing and synthesizing. The RFML model outperformed the SWAT model in accuracy and demonstrated its capability in predicting streamflow in this region. We implemented a customized approach to the RFR model to assess the model’s performance for three training periods, across 1991–2010, 1996–2010, and 2001–2010; the results indicated that the model’s accuracy improved with longer training periods, implying that the model trained on a more extended period is better able to capture the parameters’ variability and reproduce streamflow data more accurately. The variable importance (i.e., IncNodePurity) measure of the RFML model revealed that the snow depth and the minimum temperature were consistently the top two predictors across all training periods. The paper also evaluated how well the SWAT model performs in reproducing streamflow data of the watershed with a conventional approach. The SWAT model needed more time and data to set up and calibrate, delivering acceptable performance in annual mean streamflow simulation, with satisfactory index of agreement (d), coefficient of determination (R2), and percent bias (PBIAS) values, but monthly simulation warrants further exploration and model adjustments. The study recommends exploring snowmelt runoff hydrologic processes, dust-driven sublimation effects, and more detailed topographic input parameters to update the SWAT snowmelt routine for better monthly flow estimation. The results provide a critical analysis for enhancing streamflow prediction, which is valuable for further research and water resource management, including snowmelt-driven semi-arid regions.

     
    more » « less
  4. INTRODUCTION Solving quantum many-body problems, such as finding ground states of quantum systems, has far-reaching consequences for physics, materials science, and chemistry. Classical computers have facilitated many profound advances in science and technology, but they often struggle to solve such problems. Scalable, fault-tolerant quantum computers will be able to solve a broad array of quantum problems but are unlikely to be available for years to come. Meanwhile, how can we best exploit our powerful classical computers to advance our understanding of complex quantum systems? Recently, classical machine learning (ML) techniques have been adapted to investigate problems in quantum many-body physics. So far, these approaches are mostly heuristic, reflecting the general paucity of rigorous theory in ML. Although they have been shown to be effective in some intermediate-size experiments, these methods are generally not backed by convincing theoretical arguments to ensure good performance. RATIONALE A central question is whether classical ML algorithms can provably outperform non-ML algorithms in challenging quantum many-body problems. We provide a concrete answer by devising and analyzing classical ML algorithms for predicting the properties of ground states of quantum systems. We prove that these ML algorithms can efficiently and accurately predict ground-state properties of gapped local Hamiltonians, after learning from data obtained by measuring other ground states in the same quantum phase of matter. Furthermore, under a widely accepted complexity-theoretic conjecture, we prove that no efficient classical algorithm that does not learn from data can achieve the same prediction guarantee. By generalizing from experimental data, ML algorithms can solve quantum many-body problems that could not be solved efficiently without access to experimental data. RESULTS We consider a family of gapped local quantum Hamiltonians, where the Hamiltonian H ( x ) depends smoothly on m parameters (denoted by x ). The ML algorithm learns from a set of training data consisting of sampled values of x , each accompanied by a classical representation of the ground state of H ( x ). These training data could be obtained from either classical simulations or quantum experiments. During the prediction phase, the ML algorithm predicts a classical representation of ground states for Hamiltonians different from those in the training data; ground-state properties can then be estimated using the predicted classical representation. Specifically, our classical ML algorithm predicts expectation values of products of local observables in the ground state, with a small error when averaged over the value of x . The run time of the algorithm and the amount of training data required both scale polynomially in m and linearly in the size of the quantum system. Our proof of this result builds on recent developments in quantum information theory, computational learning theory, and condensed matter theory. Furthermore, under the widely accepted conjecture that nondeterministic polynomial-time (NP)–complete problems cannot be solved in randomized polynomial time, we prove that no polynomial-time classical algorithm that does not learn from data can match the prediction performance achieved by the ML algorithm. In a related contribution using similar proof techniques, we show that classical ML algorithms can efficiently learn how to classify quantum phases of matter. In this scenario, the training data consist of classical representations of quantum states, where each state carries a label indicating whether it belongs to phase A or phase B . The ML algorithm then predicts the phase label for quantum states that were not encountered during training. The classical ML algorithm not only classifies phases accurately, but also constructs an explicit classifying function. Numerical experiments verify that our proposed ML algorithms work well in a variety of scenarios, including Rydberg atom systems, two-dimensional random Heisenberg models, symmetry-protected topological phases, and topologically ordered phases. CONCLUSION We have rigorously established that classical ML algorithms, informed by data collected in physical experiments, can effectively address some quantum many-body problems. These rigorous results boost our hopes that classical ML trained on experimental data can solve practical problems in chemistry and materials science that would be too hard to solve using classical processing alone. Our arguments build on the concept of a succinct classical representation of quantum states derived from randomized Pauli measurements. Although some quantum devices lack the local control needed to perform such measurements, we expect that other classical representations could be exploited by classical ML with similarly powerful results. How can we make use of accessible measurement data to predict properties reliably? Answering such questions will expand the reach of near-term quantum platforms. Classical algorithms for quantum many-body problems. Classical ML algorithms learn from training data, obtained from either classical simulations or quantum experiments. Then, the ML algorithm produces a classical representation for the ground state of a physical system that was not encountered during training. Classical algorithms that do not learn from data may require substantially longer computation time to achieve the same task. 
    more » « less
  5. null (Ed.)
    Abstract. In the past decades, data-driven machine-learning (ML) models have emerged as promising tools for short-term streamflow forecasting. Among other qualities, the popularity of ML models for such applications is due to their relative ease in implementation, less strict distributional assumption, and competitive computational and predictive performance. Despite the encouraging results, most applications of ML for streamflow forecasting have been limited to watersheds in which rainfall is the major source of runoff. In this study, we evaluate the potential of random forests (RFs), a popular ML method, to make streamflow forecasts at 1 d of lead time at 86 watersheds in the Pacific Northwest. These watersheds cover diverse climatic conditions and physiographic settings and exhibit varied contributions of rainfall and snowmelt to their streamflow. Watersheds are classified into three hydrologic regimes based on the timing of center-of-annual flow volume: rainfall-dominated, transient, and snowmelt-dominated. RF performance is benchmarked against naïve and multiple linear regression (MLR) models and evaluated using four criteria: coefficient of determination, root mean squared error, mean absolute error, and Kling–Gupta efficiency (KGE). Model evaluation scores suggest that the RF performs better in snowmelt-driven watersheds compared to rainfall-driven watersheds. The largest improvements in forecasts compared to benchmark models are found among rainfall-driven watersheds. RF performance deteriorates with increases in catchment slope and soil sandiness. We note disagreement between two popular measures of RF variable importance and recommend jointly considering these measures with the physical processes under study. These and other results presented provide new insights for effective application of RF-based streamflow forecasting. 
    more » « less