skip to main content


Search for: All records

Award ID contains: 1934721

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Streamflow prediction is a long‐standing hydrologic problem. Development of models for streamflow prediction often requires incorporation of catchment physical descriptors to characterize the associated complex hydrological processes. Across different scales of catchments, these physical descriptors also allow models to extrapolate hydrologic information from one catchment to others, a process referred to as “regionalization”. Recently, in gauged basin scenarios, deep learning models have been shown to achieve state of the art regionalization performance by building a global hydrologic model. These models predict streamflow given catchment physical descriptors and weather forcing data. However, these physical descriptors are by their nature uncertain, sometimes incomplete, or even unavailable in certain cases, which limits the applicability of this approach. In this paper, we show that by assigning a vector of random values as a surrogate for catchment physical descriptors, we can achieve robust regionalization performance under a gauged prediction scenario. Our results show that the deep learning model using our proposed random vector approach achieves a predictive performance comparable to that of the model using actual physical descriptors. The random vector approach yields robust performance under different data sparsity scenarios and deep learning model selections. Furthermore, based on the use of random vectors, high‐dimensional characterization improves regionalization performance in gauged basin scenario when physical descriptors are uncertain, or insufficient.

     
    more » « less
  2. Abstract

    Most environmental data come from a minority of well‐monitored sites. An ongoing challenge in the environmental sciences is transferring knowledge from monitored sites to unmonitored sites. Here, we demonstrate a novel transfer‐learning framework that accurately predicts depth‐specific temperature in unmonitored lakes (targets) by borrowing models from well‐monitored lakes (sources). This method, meta‐transfer learning (MTL), builds a meta‐learning model to predict transfer performance from candidate source models to targets using lake attributes and candidates' past performance. We constructed source models at 145 well‐monitored lakes using calibrated process‐based (PB) modeling and a recently developed approach called process‐guided deep learning (PGDL). We applied MTL to either PB or PGDL source models (PB‐MTL or PGDL‐MTL, respectively) to predict temperatures in 305 target lakes treated as unmonitored in the Upper Midwestern United States. We show significantly improved performance relative to the uncalibrated PB General Lake Model, where the median root mean squared error (RMSE) for the target lakes is 2.52°C. PB‐MTL yielded a median RMSE of 2.43°C; PGDL‐MTL yielded 2.16°C; and a PGDL‐MTL ensemble of nine sources per target yielded 1.88°C. For sparsely monitored target lakes, PGDL‐MTL often outperformed PGDL models trained on the target lakes themselves. Differences in maximum depth between the source and target were consistently the most important predictors. Our approach readily scales to thousands of lakes in the Midwestern United States, demonstrating that MTL with meaningful predictor variables and high‐quality source models is a promising approach for many kinds of unmonitored systems and environmental variables.

     
    more » « less
  3. Accurate long-term predictions are the foundations for many machine learning applications and decision-making processes. However, building accurate long-term prediction models remains challenging due to the limitations of existing temporal models like recurrent neural networks (RNNs), as they capture only the statistical connections in the training data and may fail to learn the underlying dynamics of the target system. To tackle this challenge, we propose a novel machine learning model based on Koopman operator theory, which we call Koopman Invertible Autoencoders (KIA), that captures the inherent characteristic of the system by modeling both forward and backward dynamics in the infinite-dimensional Hilbert space. This enables us to efficiently learn low-dimensional representations, resulting in more accurate predictions of long-term system behavior. Moreover, our method’s invertibility design enforces reversibility and consistency in both forward and inverse operations. We illustrate the utility of KIA on pendulum and climate datasets, demonstrating 300% improvements in long-term prediction capability for pendulum while maintaining robustness against noise. Additionally, our method demonstrates the ability to better comprehend the intricate dynamics of the climate system when compared to existing Koopman-based methods. 
    more » « less
    Free, publicly-accessible full text available December 4, 2024
  4. Shekhar, Shashi ; Zhou, Zhi-Hua ; Chiang, Yao-Yi ; Stiglic, Gregor (Ed.)
    Rapid advancement in inverse modeling methods have brought into light their susceptibility to imperfect data. This has made it imperative to obtain more explainable and trustworthy estimates from these models. In hydrology, basin characteristics can be noisy or missing, impacting streamflow prediction. We propose a probabilistic inverse model framework that can reconstruct robust hydrology basin characteristics from dynamic input weather driver and streamflow response data. We address two aspects of building more explainable inverse models, uncertainty estimation (uncertainty due to imperfect data and imperfect model) and robustness. This can help improve the trust of water managers, handling of noisy data and reduce costs. We also propose an uncertainty based loss regularization that offers removal of 17% of temporal artifacts in reconstructions, 36% reduction in uncertainty and 4% higher coverage rate for basin characteristics. The forward model performance (streamflow estimation) is also improved by 6% using these uncertainty learning based reconstructions. 
    more » « less
  5. Shekhar, Shashi ; Zhou, Zhi-Hua ; Chiang, Yao-Yi ; Stiglic, Gregor (Ed.)
    In many environmental applications, recurrent neural networks (RNNs) are often used to model physical variables with long temporal dependencies. However, due to minibatch training, temporal relationships between training segments within the batch (intra-batch) as well as between batches (inter-batch) are not considered, which can lead to limited performance. Stateful RNNs aim to address this issue by passing hidden states between batches. Since Stateful RNNs ignore intra-batch temporal dependency, there exists a trade-off between training stability and capturing temporal dependency. In this paper, we provide a quantitative comparison of different Stateful RNN modeling strategies, and propose two strategies to enforce both intra- and inter-batch temporal dependency. First, we extend Stateful RNNs by defining a batch as a temporally ordered set of training segments, which enables intra-batch sharing of temporal information. While this approach significantly improves the performance, it leads to much larger training times due to highly sequential training. To address this issue, we further propose a new strategy which augments a training segment with an initial value of the target variable from the timestep right before the starting of the training segment. In other words, we provide an initial value of the target variable as additional input so that the network can focus on learning changes relative to that initial value. By using this strategy, samples can be passed in any order (mini-batch training) which significantly reduces the training time while maintaining the performance. In demonstrating the utility of our approach in hydrological modeling, we observe that the most significant gains in predictive accuracy occur when these methods are applied to state variables whose values change more slowly, such as soil water and snowpack, rather than continuously moving flux variables such as streamflow. 
    more » « less
  6. Machine Learning is beginning to provide state-of-the-art performance in a range of environmental applications such as streamflow prediction in a hydrologic basin. However, building accurate broad-scale models for streamflow remains challenging in practice due to the variability in the dominant hydrologic processes, which are best captured by sets of process-related basin characteristics. Existing basin characteristics suffer from noise and uncertainty, among many other things, which adversely impact model performance. To tackle the above challenges, in this paper, we propose a novel Knowledge-guided Self-Supervised Learning (KGSSL) inverse framework to extract system characteristics from driver(input) and response(output) data. This first-of-its-kind framework achieves robust performance even when characteristics are corrupted or missing. We evaluate the KGSSL framework in the context of stream flow modeling using CAMELS (Catchment Attributes and MEteorology for Large-sample Studies) which is a widely used hydrology benchmark dataset. Specifically, KGSSL outperforms baseline by 16% in predicting missing characteristics. Furthermore, in the context of forward modelling, KGSSL inferred characteristics provide a 35% improvement in performance over a standard baseline when the static characteristic are unknown. 
    more » « less
  7. The volume of a lake is a crucial component in understanding environmental and hydrologic processes. The State of Minnesota (USA) has tens of thousands of lakes, but only a small fraction has readily available bathymetric information. In this paper we develop and test methods for predicting water volume in the lake-rich region of Central Minnesota. We used three different published regression models for predicting lake volume using available data. The first model utilized lake surface area as the sole independent variable. The second model utilized lake surface area but also included an additional independent variable, the average change in land surface area in a designated buffer area surrounding a lake. The third model also utilized lake surface area but assumed the land surface to be a self-affine surface, thus allowing the surface area-lake volume relationship to be governed by a scale defined by the Hurst coefficient. These models all utilized bathymetric data available for 816 lakes across the region of study. The models explained over 80% of the variation in lake volumes. The sum difference between the total predicted lake volume and known volumes were <2%. We applied these models to predicting lake volumes using available independent variables for over 40,000 lakes within the study region. The total lake volumes for the methods ranged from 1,180,000- and 1,200,000-hectare meters. We also investigated machine learning models for estimating the individual lake volumes and found they achieved comparable and slightly better predictive performance than from the three regression analysis methods. A 15-year time series of satellite data for the study region was used to develop a time series of lake surface areas and those were used, with the first regression model, to calculate individual lake volumes and temporal variation in the total lake volume of the study region. The time series of lake volumes quantified the effect on water volume of a dry period that occurred from 2011 to 2012. These models are important both for estimating lake volume, but also provide critical information for scaling up different ecosystem processes that are sensitive to lake bathymetry. 
    more » « less
  8. Accurate predictions of water temperature are the foundation for many decisions and regulations, with direct impacts on water quality, fishery yields, and power production. Building accurate broad-scale models for lake temperature prediction remains challenging in practice due to the variability in the data distribution across different lake systems monitored by static and time-series data. In this paper, to tackle the above challenges, we propose a novel machine learning based approach for integrating static and time-series data in deep recurrent models, which we call Invertibility-Aware-Long Short-Term Memory(IA-LSTM), and demonstrate its effectiveness in predicting lake temperature. Our proposed method integrates components of the Invertible Network and LSTM to better predict temperature profiles (forward modeling) and infer the static features (i.e., inverse modeling) that can eventually enhance the prediction when static variables are missing. We evaluate our method on predicting the temperature profile of 450 lakes in the Midwestern U.S. and report a relative improvement of 4\% to capture data heterogeneity and simultaneously outperform baseline predictions by 12\% when static features are unavailable. 
    more » « less