Abstract Landscapes following wildfire commonly have significant increases in sediment yield and debris flows that pose major hazards and are difficult to predict. Ultimately, post-wildfire sediment yield is governed by processes that deliver sediment from hillslopes to channels, but it is commonly unclear the degree to which hillslope sediment delivery is driven by wet versus dry processes, which limits the ability to predict debris-flow occurrence and response to climate change. Here we use repeat airborne lidar topography to track sediment movement following the 2009 CE Station Fire in southern California, USA, and show that post-wildfire debris flows initiated in channels filled by dry sediment transport, rather than on hillsides during rainfall as typically assumed. We found widespread patterns of 1–3 m of dry sediment loading in headwater channels immediately following wildfire and before rainfall, followed by sediment excavation during subsequent storms. In catchments where post-wildfire dry sediment loading was absent, possibly due to differences in lithology, channel scour during storms did not occur. Our results support a fire-flood model in bedrock landscapes whereby debris-flow occurrence depends on dry sediment loading rather than hillslope-runoff erosion, shallow landslides, or burn severity, indicating that sediment supply can limit debris-flow occurrence in bedrock landscapes with more-frequent fires.
more »
« less
Predicting post‐fire debris flow grain sizes and depositional volumes in the Intermountain West, United States
Abstract Post‐fire debris flows represent one of the most erosive consequences associated with increasing wildfire severity and investigations into their downstream impacts have been limited. Recent advances have linked existing hydrogeomorphic models to predict potential impacts of post‐fire erosion at watershed scales on downstream water resources. Here we address two key limitations in current models: (1) accurate predictions of post‐fire debris flow volumes in the absence of triggering storm rainfall intensities and (2) understanding controls on grain sizes produced by post‐fire debris flows. We compiled and analysed a novel dataset of depositional volumes and grain size distributions (GSDs) for 59 post‐fire debris flows across the Intermountain West (IMW) collected via fieldwork and from the literature. We first evaluated the utility of existing models for post‐fire debris flow volume prediction, which were largely developed for Southern California. We then constructed a new post‐fire debris flow volume prediction model for the IMW using a combination of Random Forest modelling and regression analysis. We found topography and burn severity to be important variables, and that the percentage of pre‐fire soil organic matter was an essential predictor variable. Our model was also capable of predicting debris flow volumes without data for the triggering storm, suggesting that rainfall may be more important as a presence/absence predictor, rather than a scaling variable. We also constructed the first models that predict the median, 16th percentile, and 84th percentile grain sizes, as well as boulder size, produced by post‐fire debris flows. These models demonstrate consistent landscape controls on debris flow GSDs that are related to land cover, physical and chemical weathering, and hillslope sediment transport processes. This work advances our ability to predict how post‐fire sediment pulses are transported through watersheds. Our models allow for improved pre‐ and post‐fire risk assessments across diverse ranges of watersheds in the IMW.
more »
« less
- Award ID(s):
- 1848667
- PAR ID:
- 10373156
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Earth Surface Processes and Landforms
- Volume:
- 48
- Issue:
- 1
- ISSN:
- 0197-9337
- Page Range / eLocation ID:
- p. 179-197
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Pirulli, M; Leonardi, A; Vagnon, F (Ed.)Wildfire makes landscapes more vulnerable to debris flows by reducing soil infiltration capacity and decreasing vegetation cover. The extent to which fire affects debris-flow processes depends on the severity of the fire, the climatology of intense rainfall, the pre-fire plant community, and sediment supply, among other factors. As fire expands into new plant communities and geographic regions, there is a corresponding need to expand efforts to document fire-induced changes and their impacts on debris-flow processes. In recent years, several large wildfires have impacted portions of the Sonoran Desertscrub plant community in Arizona, USA, a plant community where fire has been historically infrequent. Following two of these fires, we monitored debris-flow activity at the watershed scale and quantified wildfire-driven changes in soil hydraulic properties using in-situ measurements with mini disk tension infiltrometers. Results indicate that rainfall intensity-duration thresholds for the initiation of post-fire debris flows in recently burned watersheds within the Sonoran Desertscrub plant community are substantially greater than those in nearby areas dominated by other plant communities, such as chaparral. Results provide insight into the impact of fire on debris-flow processes in a plant community where it is likely to be more impactful in the future and help expand existing post-fire debris flow databases into a plant community where there is a paucity of observations.more » « less
-
Pirulli, M.; Leonardi, A.; Vagnon, F. (Ed.)Debris flows pose a serious threat to human life and infrastructure in downstream areas following wildfire. This underscores the necessity for having a hazard assessment framework in place that can be used to estimate the impacts of post-wildfire debris flows. Current hazard assessments in the western United States (USA) use empirical models to assess the volume of potential post-wildfire debris flows. Volume models provide information regarding the magnitude and potential downstream impacts of debris flows. In this study, we gathered post-wildfire debris-flow volume data from 54 watersheds across the states of Arizona (AZ) and New Mexico (NM), USA, and compared these data to the output of a widely used empirical post-wildfire debris-flow volume model. Results show that the volume model, which was developed using data from the Transverse Ranges of southern California (CA), tends to overestimate observed volumes from AZ and NM, sometimes by several orders of magnitude. This disparity may be explained by regional differences between southern CA and AZ and NM, including differences in sediment supply. However, we found a power- law relationship between debris-flow volume and watershed area that can be used to put first-order constraints on debris-flow volume in AZ and NM.more » « less
-
Abstract Post‐fire debris flows alter impacted fluvial systems, but few studies quantify the magnitude and timing of reach‐scale channel response to these events. In August 2020, the Big Creek watershed along California's central coast burned in the Dolan Fire; in January 2021, an atmospheric river event triggered post‐fire debris flows in steep tributaries to the Big Creek. Here, we characterize the evolution of fluvial morphology and grain size in Big Creek, a cascade and step‐pool channel downstream of tributaries in which post‐fire debris flows initiated, using pre‐ and post‐fire structure from motion (SfM) and airborne lidar surveys. We also make comparisons to Devil's Creek, an adjacent basin which burned but did not experience post‐fire debris flows. We observe grain size fining following debris flows in Big Creek, but the coarsest 40% of the grain size distribution remained essentially unchanged despite reorganization of channel structure. Changes in grain size and elevated post‐fire peak flows account for approximately equal portions of a substantial increase in modeled bedload transport capacity one year post‐fire. In Big Creek, geomorphic recovery is well underway just two years post‐fire. A valley‐spanning log jam, which formed during debris flows, acts as a sediment trap upstream of our Big Creek study reach, and is partially responsible for accelerating recovery processes. In contrast, Devil's Creek exhibited little change in morphology or grain size despite elevated post‐fire peak flows. This period of geomorphic dynamism following the Dolan Fire has complex ecological impacts, notably for the threatened anadromous salmonid spawning habitat in Big Creek.more » « less
-
Post-fire flooding and debris flows are often triggered by increased overland flow resulting from wildfire impacts on soil infiltration capacity and surface roughness. Increasing wildfire activity and intensification of precipitation with climate change make improving understanding of post-fire overland flow a particularly pertinent task. Hydrologic signatures, which are metrics that summarize the hydrologic regime of watersheds using rainfall and runoff time series, can be calculated for large samples of watersheds relatively easily to understand post-fire hydrologic processes. We demonstrate that signatures designed specifically for overland flow reflect changes to overland flow processes with wildfire that align with previous case studies on burned watersheds. For example, signatures suggest increases in infiltration-excess overland flow and decrease in saturation-excess overland flow in the first and second years after wildfire in the majority of watersheds examined. We show that climate, watershed and wildfire attributes can predict either post-fire signatures of overland flow or changes in signature values with wildfire using machine learning. Normalized difference vegetation index (NDVI), air temperature, amount of developed/undeveloped land, soil thickness and clay content were the most used predictors by well-performing machine learning models. Signatures of overland flow provide a streamlined approach for characterizing and understanding post-fire overland flow, which is beneficial for watershed managers who must rapidly assess and mitigate the risk of post-fire hydrologic hazards after wildfire occurs.more » « less
An official website of the United States government
