skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Influence of biaxial interaction of hysteretic restoring base forces on wind-induced inelastic response of base-isolated tall buildings
This study addresses the influence of biaxial interaction of hysteretic restoring forces of base isolation system on wind-induced response of base-isolated tall buildings. Both buildings with and without eccentricity in center of resistance are considered. Response history analysis is carried out to characterize the coupled responses of a square-shaped base-isolated tall building. A comprehensive parameter study is presented which covers a wide range of yielding level, response ratio and correlation of alongwind and crosswind base displacements. The results demonstrate that the biaxial interaction leads to increase in low-frequency component and decrease in resonant component of lower inelastic base displacement. However, the increase of low-frequency component of base displacement does not affect the upper building response relative to base isolation system. As a result, the upper building response is reduced by the influence of biaxial interaction. The biaxal interaction also results in fast growth of time-varying mean alongwind base displacement. The increase of low-frequency component can be significant when the yielding level of higher response is significant and two translational base displacements are quite different in magnitude. The correlation of two translational base displacements enhances the influence of biaxial interaction. For the base-isolated building with eccentricity, the alongwind and crosswind base responses are closer in magnitudes thus are less influenced by the biaxial interaction.  more » « less
Award ID(s):
2153189
PAR ID:
10373161
Author(s) / Creator(s):
 ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Advances in Structural Engineering
Volume:
25
Issue:
16
ISSN:
1369-4332
Format(s):
Medium: X Size: p. 3235-3254
Size(s):
p. 3235-3254
Sponsoring Org:
National Science Foundation
More Like this
  1. When wind-excited tall buildings undergo vibrations beyond their linear elastic range, it becomes imperative to account for both strength and stiffness degradation and P-Delta effects. This study investigates the influence of the degradation and P-Delta effects on the inelastic response of wind-excited tall buildings through a reduced-order building model, wherein the alongwind and crosswind building responses are presumed to be contributed by the fundamental modes. The backbone curves of the hysteretic relationships between the generalized restoring forces and displacements are developed through monotonic static modal pushover analysis utilizing a high-fidelity finite element building model with consideration of P-Delta effect. A cyclic modal pushover analysis is performed to ascertain the degradation of generalized building stiffness and strength in both translation directions, stemming from the deterioration of steel material in stiffness and strength. Subsequently, a biaxial hysteretic force model is employed to depict the hysteretic relationships between generalized forces and displacements, factoring in degradation and P-Delta effects. The inelastic response of a 60-story steel building subjected to both alongwind and crosswind load excitations is quantified through response history analysis to assess the accuracy of the reduced-order building model and to evaluate the influence of degradation of material strength and pre-yield stiffness and P-Delta effects on various responses. 
    more » « less
  2. Large-scale seismic structural tests are crucial to validating both structural design methodologies and the effectiveness of seismic isolation devices. However, considering the significant costs of such tests, it is essential to leverage data from completed tests by taking advantage of numerical models of the tested structures, updated using data collected from the experiments, to complete additional studies that may be difficult, unsafe or impossible to physically test. However, updating complex numerical models poses its own challenges. The first contribution of this paper is to develop a multi-stage model updating method suitable for high-order models of base-isolated structures, which is motivated and evaluated through modeling and model updating of a full-scale four-story base-isolated reinforced-concrete frame building that was tested in 2013 at the NIED E-Defense laboratory in Japan. In most studies involving model updating, all to-be-updated parameters are typically updated simultaneously; however, given the observation that the superstructure in this study predominantly moves as a rigid body in low-frequency modes and the isolation layer plays a minor role in all other modes, this study proposes updating parameters in stages: first, the linear superstructure parameters are updated so that its natural frequencies and mode shapes match those identified via a subspace system identification of the experimental building responses to low-level random excitations; then, the isolation-layer device linear parameters are updated so that the natural frequencies, damping ratios and mode shapes of the three isolation modes match. These two stages break a large-scale linear model updating problem into two smaller problems, thereby reducing the search space for the to-be-updated parameters, which generally reduces computational costs regardless of what optimization algorithm is adopted. Due to the limited instrumentation, the identified modes constitute only a subset of all the modes; to match each identified mode with a FEM mode, a procedure is proposed to compare each identified mode with a candidate set of FEM modes and to select the best match, which is a second contribution. Further, nonlinear isolation-layer device models are proposed, updated and validated with experimental data. Finally, combining the isolation-layer devices' nonlinear models with the updated superstructure linear FEM, the final result is a data-calibrated nonlinear numerical model that will be used for further studies of controllable damping and validation of new design methodologies, and is being made available for use by the research community, alleviating the dearth of experimentally-calibrated numerical models of full-scale base-isolated buildings with lateral-torsional coupling effects. 
    more » « less
  3. null (Ed.)
    Building contents and nonstructural components are known to be vulnerable during seismic events. Of particular concern is computer and network equipment that is critical in the post-earthquake recovery process. A solution for mitigating the seismic hazard to such systems is rolling-type isolation systems (RISs), but the characterization of RISs with realistic loading conditions and system setups is not well documented. An experimental parametric case study was performed varying the mass eccentricity, the number of cabinets, and the damping to simulate in-service conditions. A series of free response tests was performed using an abrupt shake table displacement (pulse) along with forced response tests utilizing the VERTEQ-II Zone-4 waveform. An array or string potentiometers and accelerometers measured the longitudinal, transverse, and rotational responses of the systems. Supplementally damped systems were found to have increased rotations when a mass eccentricity was present. The increase in system size and mass reduced the overall rotations due to an increased restoring moment arm and higher mass moment of inertia. Increased damping decreased the displacement demand on the isolator but increased the overall accelerations slightly. However, the systems without the supplemental damping had such large displacements that impacts were experienced causing excessively high accelerations. Durability was an issue for lightly damped systems due to increased contact stress between the ball and concave rolling surface. A physics-based mathematical model was developed for the prediction of the response of multi-unit RIS arrays with mass eccentricity. The model was first calibrated to the experimental free response tests and then validated with the forced response tests. The validated model was then used to perform a numerical parametric case study. Configurations with one, two, four and eight cabinets were modeled, and the eccentricity was varied. The VERTEQ-II waveform was applied in both the front-to-back and side-to-side directions under varying ground motion scaling. Impacts are predicted at lower ground motion scaling with larger mass eccentricity due to the initiation of rotations. The ground motion scaling for which impacts occur is increased due to the systems higher resistance to rotations from increased number of isolated cabinets. Finally, capacity design curves for the impact point were determined, which can be used to establish the required configuration (number of cabinets and eccentricity) for a given ground motion intensity. 
    more » « less
  4. With global urbanization trends, the demands for tall residential and mixed-use buildings in the range of 8~20 stories are increasing. One new structural system in this height range are tall wood buildings which have been built in select locations around the world using a relatively new heavy timber structural material known as cross laminated timber (CLT). With its relatively light weight, there is consensus amongst the global wood seismic research and practitioner community that tall wood buildings have a substantial potential to become a key solution to building future seismically resilient cities. This paper introduces the NHERI Tallwood Project recentely funded by the U.S. National Science Fundation to develop and validate a seismic design methodology for tall wood buildings that incorporates high-performance structural and nonstructural systems and can quantitatively account for building resilience. This will be accomplished through a series of research tasks planned over a 4-year period. These tasks will include mechanistic modeling of tall wood buildings with several variants of post-tensioned rocking CLT wall systems, fragility modeling of structural and non-structural building components that affect resilience, full-scale biaxial testing of building sub-assembly systems, development of a resilience-based seismic design (RBSD) methodology, and finally a series of full-scale shaking table tests of a 10-story CLT building specimen to validate the proposed design. The project will deliver a new tall building type capable of transforming the urban building landscape by addressing urbanization demand while enhancing resilience and sustainability. 
    more » « less
  5. null (Ed.)
    Nonstructural components within mission-critical facilities such as hospitals and telecommunication facilities are vital to a community's resilience when subjected to a seismic event. Building contents like medical and computer equipment are critical for the response and recovery process following an earthquake. A solution to protecting these systems from seismic hazards is base isolation. Base isolation systems are designed to decouple an entire building structure from destructive ground motions. For other buildings not fitted with base isolation, a practical and economical solution to protect vital building contents from earthquake-induced floor motion is to isolate individual equipment using, for example, rolling-type isolation systems (RISs). RISs are a relatively new innovation for protecting equipment. These systems function as a pendulum-like mechanism to convert horizontal motion into vertical motion. An accompanying change in potential energy creates a restoring force related to the slope of the rolling surface. This study seeks to evaluate the seismic hazard mitigation performance of RISs, as well as propose and test a novel double RIS. A physics-based mathematical model was developed for a single RIS via Lagrange's equation adhering to the kinetic constraint of rolling without slipping. The mathematical model for the single RIS was used to predict the response and characteristics of these systems. A physical model was fabricated with additive manufacturing and tested against multiple earthquakes on a shake table. The system featured a single-degree-of-freedom (SDOF) structure to represent a piece of equipment. The results showed that the RIS effectively reduced accelerations felt by the SDOF compared to a fixed-base SDOF system. The single RIS experienced the most substantial accelerations from the Mendocino record, which contains low-frequency content in the range of the RIS's natural period (1-2 seconds). Earthquakes with these long-period components have the potential to cause impacts within the isolation bearing that would degrade its performance. To accommodate large displacements, a double RIS is proposed. The double RIS has twice the displacement capacity of a single RIS without increasing the size of the bearing components. The mathematical model for the single RIS was extended to the double RIS following a similar procedure. Two approaches were used to evaluate the double RIS's performance: stochastic and deterministic. The stochastic response of the double RIS under stationary white noise excitation was evaluated for relevant system parameters, namely mass ratio and tuning frequency. Both broadband and filtered (Kanai-Tajimi) white noise excitation were considered. The response variances of the double RIS were normalized by a baseline single RIS for a comparative study, from which design parameter maps were drawn. A deterministic analysis was conducted to further evaluate the double RIS in the case of nonstationary excitation. The telecommunication equipment qualification waveform, VERTEQ-II, was used for these numerical simulations. Peak transient responses were compared to the single RIS responses, and optimal design regions were determined. General design guidelines based on the stochastic and deterministic analyses are given. The results aim to provide a framework usable in the preliminary design stage of a double RIS to mitigate seismic responses. 
    more » « less