skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2153189

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. When wind-excited tall buildings undergo vibrations beyond their linear elastic range, it becomes imperative to account for both strength and stiffness degradation and P-Delta effects. This study investigates the influence of the degradation and P-Delta effects on the inelastic response of wind-excited tall buildings through a reduced-order building model, wherein the alongwind and crosswind building responses are presumed to be contributed by the fundamental modes. The backbone curves of the hysteretic relationships between the generalized restoring forces and displacements are developed through monotonic static modal pushover analysis utilizing a high-fidelity finite element building model with consideration of P-Delta effect. A cyclic modal pushover analysis is performed to ascertain the degradation of generalized building stiffness and strength in both translation directions, stemming from the deterioration of steel material in stiffness and strength. Subsequently, a biaxial hysteretic force model is employed to depict the hysteretic relationships between generalized forces and displacements, factoring in degradation and P-Delta effects. The inelastic response of a 60-story steel building subjected to both alongwind and crosswind load excitations is quantified through response history analysis to assess the accuracy of the reduced-order building model and to evaluate the influence of degradation of material strength and pre-yield stiffness and P-Delta effects on various responses. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. This study addresses the influence of biaxial interaction of hysteretic restoring forces of base isolation system on wind-induced response of base-isolated tall buildings. Both buildings with and without eccentricity in center of resistance are considered. Response history analysis is carried out to characterize the coupled responses of a square-shaped base-isolated tall building. A comprehensive parameter study is presented which covers a wide range of yielding level, response ratio and correlation of alongwind and crosswind base displacements. The results demonstrate that the biaxial interaction leads to increase in low-frequency component and decrease in resonant component of lower inelastic base displacement. However, the increase of low-frequency component of base displacement does not affect the upper building response relative to base isolation system. As a result, the upper building response is reduced by the influence of biaxial interaction. The biaxal interaction also results in fast growth of time-varying mean alongwind base displacement. The increase of low-frequency component can be significant when the yielding level of higher response is significant and two translational base displacements are quite different in magnitude. The correlation of two translational base displacements enhances the influence of biaxial interaction. For the base-isolated building with eccentricity, the alongwind and crosswind base responses are closer in magnitudes thus are less influenced by the biaxial interaction. 
    more » « less