skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data science for pedestrian and high street retailing as a framework for advancing urban informatics to individual scales
Abstract BackgroundIn this paper, we consider the applicability of the customer journey framework from retailing as a driver for urban informatics at individual scales within urban science. The customer journey considers shopper experiences in the context of shopping paths, retail service spaces, and touch-points that draw them into contact. Around this framework, retailers have developed sophisticated data science for observation, identification, and measurement of customers in the context of their shopping behavior. This knowledge supports broad data-driven understanding of customer experiences in physical spaces, economic spaces of decision and choice, persuasive spaces of advertising and branding, and inter-personal spaces of customer-staff interaction. MethodWe review the literature on pedestrian and high street retailing, and on urban informatics. We investigate whether the customer journey could be usefully repurposed for urban applications. Specifically, we explore the potential use of the customer journey framework for producing new insight into pedestrian behavior, where a sort of empirical hyperopia has long abounded because data are always in short supply. ResultsOur review addresses how the customer journey might be used as a structure for examining how urban walkers come into contact with the built environment, how people actively and passively sense and perceive ambient city life as they move, how pedestrians make sense of urban context, and how they use this knowledge to build cognition of city streetscapes. Each of these topics has relevance to walking studies specifically, but also to urban science more generally. We consider how retailing might reciprocally benefit from urban science perspectives, especially in extending the reach of retailers' insight beyond store walls, into the retail high streets from which they draw custom. ConclusionWe conclude that a broad set of theoretical frameworks, data collection schemes, and analytical methodologies that have advanced retail data science closer and closer to individual-level acumen might be usefully applied to accomplish the same in urban informatics. However, we caution that differences between retailers’ and urban scientists’ viewpoints on privacy presents potential controversy.  more » « less
Award ID(s):
2027652 1729815
PAR ID:
10373166
Author(s) / Creator(s):
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Urban Informatics
Volume:
1
Issue:
1
ISSN:
2731-6963
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Here, we examine the extension of smart retailing from the indoor confines of stores, outward to high streets. We explore how several technologies at the union of retail intelligence and smart city monitoring could coalesce into retail high streets that are both smart and sentient. We examine the new vantages that smart and sentient retail high streets provide on the customer journey, and how they could transform retailers’ sway over customer experience with new reach to the public spaces around shops. In doing so, we pursue a three-way consideration of these issues, examining the technology that underpins smart retailing, new advances in artificial intelligence and machine learning that beget a level of street-side sentience, and opportunities for retailers to map the knowledge that those technologies provide to individual customer journeys in outdoor settings. Our exploration of these issues takes form as a review of the literature and the introduction of our own research to prototype smart and sentient retail systems for high streets. The topic of enhancing retailers’ acuity on high streets has significant currency, as many high street stores have recently been struggling to sustain custom. However, the production and application of smart and sentient technologies at hyper-local resolution of the streetscape conjures some sobering considerations about shoppers’ and pedestrians’ rights to privacy in public. 
    more » « less
  2. Abstract In this review paper, we aim to make the case that a concept from retail analytics and marketing—thecustomer journey—can provide promising new frameworks and support for agent-based modeling, with a broad range of potential applications to high-resolution and high-fidelity simulation of dynamic phenomena on urban high streets. Although not the central focus of the review, we consider agent-based modeling of retail high streets against a backdrop of broader debate about downtown vitality and revitalization, amid a climate of economic challenges for brick-and-mortar retail. In particular, we consider how agent-based modeling, supported by insights from consideration of indoor shopping, can provide planning and decision support in outdoor high street settings. Our review considers abstractions of customers through conceptual modeling and customer typology, as well as abstractions of retailing as stationary and mobile. We examine high-level agency of shop choice and selection, as well as low-level agency centered on perception and cognition. Customer journeys are most often trips through geography; we therefore review path-planning, generation of foot traffic, wayfinding, steering, and locomotion. On busy high streets, journeys also manifest within crowd motifs; we thus review proximity, group dynamics, and sociality. Many customer journeys along retail high streets are dynamic, and customers will shift their journeys as they come into contact with experiences and service offerings. To address this, we specifically consider treatment of time and timing in agent-based models. We also examine sites for customer journeys, looking in particular at how agent-based models can provide support for the analysis of atmospherics, artifacts, and location-based services. Finally, we examine staff-side agency, considering store staff as potential agents outdoors; and we look at work to build agent-based models of fraud from customer journey analysis. 
    more » « less
  3. Prior research reports mixed results regarding the economic impacts of crime. This study employs data from all regions of Mexico, including border regions in both the north and the south, to examine the effects of homicides on retail activity across Mexico during a period of escalating violence. The results indicate that one additional homicide within a municipality eliminates one retail establishment and one paid job in the retail sector. Furthermore, the negative consequences of violent crime for retailers are augmented by proximity to an international border. This is consistent with previous research findings that cross-border shopping is a key feature of commerce along the international boundaries of Mexico. It suggests that crime waves may disproportionately impact border city retail activity by partially diverting customer traffic to stores located in neighboring countries. This result is also consistent with the finding of recent research that violent conflict in northern Mexico resulted in increased retail activity in some United States border cities. 
    more » « less
  4. This study investigates the relationship between urban walkability and human stress across three distinct sites, utilizing data collected from wearable sensors. The objective is to assess how urban design and environmental factors influence human stress while walking. Participants were equipped with wearable sensors to monitor physiological indicators of stress (e.g., heart rate variability, etc.) as they walked through different urban environments. Data was collected in realtime to capture fluctuations in stress levels and provide insights into how specific urban design features impact pedestrian well-being. To facilitate data collection and analysis, walking areas were divided into blocks, and urban design features were grouped into six categories such as imageability, enclosure, human scale, transparency, complexity, and safety. Each city has different features, depending on the issues that were considered most pressing for that city. To supplement sensor stress data, the study also utilized surveys to gather participants’ perceptions of safety, comfort, and environmental quality. Using regression analysis, researchers identified the urban design categories that have a significant impact on stress scores and their frequency. Machine learning models were built to predict stress scores based on the urban design aspects and air quality data as input features. Results showed that increased stress is correlated with poorly designed walkways, while lower stress was linked to well-maintained paths and green spaces. Transparency and enclosure were identified as significant contributors to pedestrian stress. The findings from one of the three cities add another dimension to the understanding of walkability and stress, highlighting that there are factors beyond basic infrastructure, such as noise levels and tree canopy can play a significant role in influencing pedestrian well-being. Findings from this research can facilitate targeted infrastructure planning and investment, better mobility, and ultimately improve the quality of life in urban areas. Future research should consider a wider range of environmental and social factors and how different factors interact over time to influence stress levels. 
    more » « less
  5. In this paper, we consider a personalized assortment planning problem under inventory constraints, where each arriving customer type is defined by a primary item of interest. As long as that item is in stock, the customer adds it to the shopping cart, at which point the retailer can recommend to the customer an assortment of add-ons to go along with the primary item. This problem is motivated by the new “recommendation at checkout” systems that have been deployed at many online retailers, and it also serves as a framework that unifies many existing problems in online algorithms (e.g., personalized assortment planning, single-leg booking, and online matching with stochastic rewards). In our problem, add-on recommendation opportunities are eluded when primary items go out of stock, which poses additional challenges for the development of an online policy. We overcome these challenges by introducing the notion of an inventory protection level in expectation and derive an algorithm with a 1/4-competitive ratio guarantee under adversarial arrivals. Funding: This work was supported by the Adobe Data Science Research Award and the Alibaba Innovation Research Award. L. Xin was partly supported by the National Science Foundation (NSF) [Award CMMI-1635160], X. Chen was supported by the NSF [CAREER Award IIS-1845444]. W. Ma and D. Simchi-Levi were supported by the Accenture and MIT Alliance in Business Analytics. 
    more » « less