Here, we examine the extension of smart retailing from the indoor confines of stores, outward to high streets. We explore how several technologies at the union of retail intelligence and smart city monitoring could coalesce into retail high streets that are both smart and sentient. We examine the new vantages that smart and sentient retail high streets provide on the customer journey, and how they could transform retailers’ sway over customer experience with new reach to the public spaces around shops. In doing so, we pursue a three-way consideration of these issues, examining the technology that underpins smart retailing, new advances in artificial intelligence and machine learning that beget a level of street-side sentience, and opportunities for retailers to map the knowledge that those technologies provide to individual customer journeys in outdoor settings. Our exploration of these issues takes form as a review of the literature and the introduction of our own research to prototype smart and sentient retail systems for high streets. The topic of enhancing retailers’ acuity on high streets has significant currency, as many high street stores have recently been struggling to sustain custom. However, the production and application of smart and sentient technologies at hyper-local resolution of the streetscape conjures some sobering considerations about shoppers’ and pedestrians’ rights to privacy in public.
more »
« less
Agent models of customer journeys on retail high streets
Abstract In this review paper, we aim to make the case that a concept from retail analytics and marketing—thecustomer journey—can provide promising new frameworks and support for agent-based modeling, with a broad range of potential applications to high-resolution and high-fidelity simulation of dynamic phenomena on urban high streets. Although not the central focus of the review, we consider agent-based modeling of retail high streets against a backdrop of broader debate about downtown vitality and revitalization, amid a climate of economic challenges for brick-and-mortar retail. In particular, we consider how agent-based modeling, supported by insights from consideration of indoor shopping, can provide planning and decision support in outdoor high street settings. Our review considers abstractions of customers through conceptual modeling and customer typology, as well as abstractions of retailing as stationary and mobile. We examine high-level agency of shop choice and selection, as well as low-level agency centered on perception and cognition. Customer journeys are most often trips through geography; we therefore review path-planning, generation of foot traffic, wayfinding, steering, and locomotion. On busy high streets, journeys also manifest within crowd motifs; we thus review proximity, group dynamics, and sociality. Many customer journeys along retail high streets are dynamic, and customers will shift their journeys as they come into contact with experiences and service offerings. To address this, we specifically consider treatment of time and timing in agent-based models. We also examine sites for customer journeys, looking in particular at how agent-based models can provide support for the analysis of atmospherics, artifacts, and location-based services. Finally, we examine staff-side agency, considering store staff as potential agents outdoors; and we look at work to build agent-based models of fraud from customer journey analysis.
more »
« less
- PAR ID:
- 10366758
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Journal of Economic Interaction and Coordination
- Volume:
- 18
- Issue:
- 1
- ISSN:
- 1860-711X
- Page Range / eLocation ID:
- p. 87-128
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract BackgroundIn this paper, we consider the applicability of the customer journey framework from retailing as a driver for urban informatics at individual scales within urban science. The customer journey considers shopper experiences in the context of shopping paths, retail service spaces, and touch-points that draw them into contact. Around this framework, retailers have developed sophisticated data science for observation, identification, and measurement of customers in the context of their shopping behavior. This knowledge supports broad data-driven understanding of customer experiences in physical spaces, economic spaces of decision and choice, persuasive spaces of advertising and branding, and inter-personal spaces of customer-staff interaction. MethodWe review the literature on pedestrian and high street retailing, and on urban informatics. We investigate whether the customer journey could be usefully repurposed for urban applications. Specifically, we explore the potential use of the customer journey framework for producing new insight into pedestrian behavior, where a sort of empirical hyperopia has long abounded because data are always in short supply. ResultsOur review addresses how the customer journey might be used as a structure for examining how urban walkers come into contact with the built environment, how people actively and passively sense and perceive ambient city life as they move, how pedestrians make sense of urban context, and how they use this knowledge to build cognition of city streetscapes. Each of these topics has relevance to walking studies specifically, but also to urban science more generally. We consider how retailing might reciprocally benefit from urban science perspectives, especially in extending the reach of retailers' insight beyond store walls, into the retail high streets from which they draw custom. ConclusionWe conclude that a broad set of theoretical frameworks, data collection schemes, and analytical methodologies that have advanced retail data science closer and closer to individual-level acumen might be usefully applied to accomplish the same in urban informatics. However, we caution that differences between retailers’ and urban scientists’ viewpoints on privacy presents potential controversy.more » « less
-
Abstract Agency is a central value within museums and science centers, but it has not been defined and operationalized in ways that can guide museum practice or support inclusion for new audiences. In this project, an interdepartmental group of science center staff co‐created a conceptual framework for noticing and supporting visitors' agency. The framework includes four interconnected aspects of agency: physical environment, social engagement, choice and autonomy, and relevance and empowerment. Conceptualizing agency as multifaceted led to more expansive approaches for supporting it, allowing staff to move beyond open‐endedness to consider a wider range of supports and structures that can make museum experiences more inviting and inclusive. The framework informed the development of practical tools for use by exhibit/program developers and facilitators. Tools are freely available and guide museum staff in questioning current practices and integrating the four facets of agency into planning, prototyping, and observation of interactive experiences.more » « less
-
Big cities are well-known for their traffic congestion and high density of vehicles such as cars, buses, trucks, and even a swarm of motorbikes that overwhelm city streets. Large-scale development projects have exacerbated urban conditions, making traffic congestion more severe. In this paper, we proposed a data-driven city traffic planning simulator. In particular, we make use of the city camera system for traffic analysis. It seeks to recognize the traffic vehicles and traffic flows, with reduced intervention from monitoring staff. Then, we develop a city traffic planning simulator upon the analyzed traffic data. The simulator is used to support metropolitan transportation planning. Our experimental findings address traffic planning challenges and the innovative technical solutions needed to solve them in big cities.more » « less
-
Motivated by modern-day applications such as attended home delivery and preference-based group scheduling, where decision makers wish to steer a large number of customers toward choosing the exact same alternative, we introduce a novel class of assortment optimization problems, referred to as maximum load assortment optimization. In such settings, given a universe of substitutable products, we are facing a stream of customers, each choosing between either selecting a product out of an offered assortment or opting to leave without making a selection. Assuming that these decisions are governed by the multinomial logit choice model, we define the random load of any underlying product as the total number of customers who select it. Our objective is to offer an assortment of products to each customer so that the expected maximum load across all products is maximized. We consider both static and dynamic formulations of the maximum load assortment optimization problem. In the static setting, a single offer set is carried throughout the entire process of customer arrivals, whereas in the dynamic setting, the decision maker offers a personalized assortment to each customer, based on the entire information available at that time. As can only be expected, both formulations present a wide range of computational challenges and analytical questions. The main contribution of this paper resides in proposing efficient algorithmic approaches for computing near-optimal static and dynamic assortment policies. In particular, we develop a polynomial time approximation scheme for the static problem formulation. Additionally, we demonstrate that an elegant policy utilizing weight-ordered assortments yields a 1/2 approximation. Concurrently, we prove that such policies are sufficiently strong to provide a 1/4 approximation with respect to the dynamic formulation, establishing a constant factor bound on its adaptivity gap. Finally, we design an adaptive policy whose expected maximum load is within factor 1-\epsilon of optimal, admitting a quasi-polynomial time implementation.more » « less
An official website of the United States government
