skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Assortment Planning for Recommendations at Checkout Under Inventory Constraints
In this paper, we consider a personalized assortment planning problem under inventory constraints, where each arriving customer type is defined by a primary item of interest. As long as that item is in stock, the customer adds it to the shopping cart, at which point the retailer can recommend to the customer an assortment of add-ons to go along with the primary item. This problem is motivated by the new “recommendation at checkout” systems that have been deployed at many online retailers, and it also serves as a framework that unifies many existing problems in online algorithms (e.g., personalized assortment planning, single-leg booking, and online matching with stochastic rewards). In our problem, add-on recommendation opportunities are eluded when primary items go out of stock, which poses additional challenges for the development of an online policy. We overcome these challenges by introducing the notion of an inventory protection level in expectation and derive an algorithm with a 1/4-competitive ratio guarantee under adversarial arrivals. Funding: This work was supported by the Adobe Data Science Research Award and the Alibaba Innovation Research Award. L. Xin was partly supported by the National Science Foundation (NSF) [Award CMMI-1635160], X. Chen was supported by the NSF [CAREER Award IIS-1845444]. W. Ma and D. Simchi-Levi were supported by the Accenture and MIT Alliance in Business Analytics.  more » « less
Award ID(s):
1845444
PAR ID:
10556470
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Informs
Date Published:
Journal Name:
Mathematics of Operations Research
Volume:
49
Issue:
1
ISSN:
0364-765X
Page Range / eLocation ID:
297 to 325
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Jointly Making Inventory Stocking and Assortment Offering Decisions Making the product assortment offer decisions for a customer requires keeping a balance between offering an assortment that will satisfy the current customer and reserving the products with scarce inventories for the customers who will arrive in the future. Therefore, whereas the assortment offer decisions should depend on the current inventories of the products, the stocking decisions should anticipate how the offered assortments will deplete the inventories, thereby creating a natural interaction between inventory stocking and assortment offer decisions. In “Coordinated Inventory Stocking and Assortment Customization,” Bai, El Housni, Rusmevichientong, and Topaloglu develop models that jointly make the assortment offer and inventory stocking decisions. Their models allocate the limited stocking capacity to the inventories for different products, while taking into consideration the assortment offer decisions that will be made for the customers arriving over a selling horizon. 
    more » « less
  2. Problem definition: We study a feature-based pricing problem with demand censoring in an offline, data-driven setting. In this problem, a firm is endowed with a finite amount of inventory and faces a random demand that is dependent on the offered price and the features (from products, customers, or both). Any unsatisfied demand that exceeds the inventory level is lost and unobservable. The firm does not know the demand function but has access to an offline data set consisting of quadruplets of historical features, inventory, price, and potentially censored sales quantity. Our objective is to use the offline data set to find the optimal feature-based pricing rule so as to maximize the expected profit. Methodology/results: Through the lens of causal inference, we propose a novel data-driven algorithm that is motivated by survival analysis and doubly robust estimation. We derive a finite sample regret bound to justify the proposed offline learning algorithm and prove its robustness. Numerical experiments demonstrate the robust performance of our proposed algorithm in accurately estimating optimal prices on both training and testing data. Managerial implications: The work provides practitioners with an innovative modeling and algorithmic framework for the feature-based pricing problem with demand censoring through the lens of causal inference. Our numerical experiments underscore the value of considering demand censoring in the context of feature-based pricing. Funding: The research of E. Fang is partially supported by the National Science Foundation [Grants NSF DMS-2346292, NSF DMS-2434666] and the Whitehead Scholarship. The research of C. Shi is partially supported by the Amazon Research Award. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2024.1061 . 
    more » « less
  3. The data-driven newsvendor problem with features has recently emerged as a significant area of research, driven by the proliferation of data across various sectors such as retail, supply chains, e-commerce, and healthcare. Given the sensitive nature of customer or organizational data often used in feature-based analysis, it is crucial to ensure individual privacy to uphold trust and confidence. Despite its importance, privacy preservation in the context of inventory planning remains unexplored. A key challenge is the nonsmoothness of the newsvendor loss function, which sets it apart from existing work on privacy-preserving algorithms in other settings. This paper introduces a novel approach to estimating a privacy-preserving optimal inventory policy within the f-differential privacy framework, an extension of the classical [Formula: see text]-differential privacy with several appealing properties. We develop a clipped noisy gradient descent algorithm based on convolution smoothing for optimal inventory estimation to simultaneously address three main challenges: (i) unknown demand distribution and nonsmooth loss function, (ii) provable privacy guarantees for individual-level data, and (iii) desirable statistical precision. We derive finite-sample high-probability bounds for optimal policy parameter estimation and regret analysis. By leveraging the structure of the newsvendor problem, we attain a faster excess population risk bound compared with that obtained from an indiscriminate application of existing results for general nonsmooth convex loss. Our bound aligns with that for strongly convex and smooth loss function. Our numerical experiments demonstrate that the proposed new method can achieve desirable privacy protection with a marginal increase in cost. This paper was accepted by J. George Shanthikumar, data science. Funding: This work was supported by the National Science Foundation [Grants DMS-2113409 and DMS 2401268 to W.-X. Zhou, and FRGMS-1952373 to L. Wang]. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2023.01268 . 
    more » « less
  4. null (Ed.)
    We study the dynamic assortment planning problem, where for each arriving customer, the seller offers an assortment of substitutable products and the customer makes the purchase among offered products according to an uncapacitated multinomial logit (MNL) model. Because all the utility parameters of the MNL model are unknown, the seller needs to simultaneously learn customers’ choice behavior and make dynamic decisions on assortments based on the current knowledge. The goal of the seller is to maximize the expected revenue, or, equivalently, to minimize the expected regret. Although dynamic assortment planning problem has received an increasing attention in revenue management, most existing policies require the estimation of mean utility for each product and the final regret usually involves the number of products [Formula: see text]. The optimal regret of the dynamic assortment planning problem under the most basic and popular choice model—the MNL model—is still open. By carefully analyzing a revenue potential function, we develop a trisection-based policy combined with adaptive confidence bound construction, which achieves an item-independent regret bound of [Formula: see text], where [Formula: see text] is the length of selling horizon. We further establish the matching lower bound result to show the optimality of our policy. There are two major advantages of the proposed policy. First, the regret of all our policies has no dependence on [Formula: see text]. Second, our policies are almost assumption-free: there is no assumption on mean utility nor any “separability” condition on the expected revenues for different assortments. We also extend our trisection search algorithm to capacitated MNL models and obtain the optimal regret [Formula: see text] (up to logrithmic factors) without any assumption on the mean utility parameters of items. 
    more » « less
  5. Motivated by modern-day applications such as attended home delivery and preference-based group scheduling, where decision makers wish to steer a large number of customers toward choosing the exact same alternative, we introduce a novel class of assortment optimization problems, referred to as maximum load assortment optimization. In such settings, given a universe of substitutable products, we are facing a stream of customers, each choosing between either selecting a product out of an offered assortment or opting to leave without making a selection. Assuming that these decisions are governed by the multinomial logit choice model, we define the random load of any underlying product as the total number of customers who select it. Our objective is to offer an assortment of products to each customer so that the expected maximum load across all products is maximized. We consider both static and dynamic formulations of the maximum load assortment optimization problem. In the static setting, a single offer set is carried throughout the entire process of customer arrivals, whereas in the dynamic setting, the decision maker offers a personalized assortment to each customer, based on the entire information available at that time. As can only be expected, both formulations present a wide range of computational challenges and analytical questions. The main contribution of this paper resides in proposing efficient algorithmic approaches for computing near-optimal static and dynamic assortment policies. In particular, we develop a polynomial time approximation scheme for the static problem formulation. Additionally, we demonstrate that an elegant policy utilizing weight-ordered assortments yields a 1/2 approximation. Concurrently, we prove that such policies are sufficiently strong to provide a 1/4 approximation with respect to the dynamic formulation, establishing a constant factor bound on its adaptivity gap. Finally, we design an adaptive policy whose expected maximum load is within factor 1-\epsilon of optimal, admitting a quasi-polynomial time implementation. 
    more » « less