skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Increasing Synchronous Fire Danger in Forests of the Western United States
Abstract Widespread fire activity taxes suppression resources and can compound wildfire hazards. We examine the geographic synchronicity of fire danger across western United States forests as a proxy for the strain on fire suppression resource availability. Interannual variability in the number of days with synchronous fire danger, defined as fire weather indices exceeding the local 90th percentile across ≥40% of forested land, was strongly correlated (r = 0.85) with the number of days with high strain on national fire management resources. A 25‐day increase in the annual number of days with synchronous fire danger was observed during 1979–2020. Climate projections show a doubling of such days by 2051–2080. Such changes will escalate the likelihood of years with extended periods of synchronous fire danger that have historically strained suppression efforts and contributed to additional burned area, therein requiring additional management strategies for coping with anticipated surges in fire suppression demands.  more » « less
Award ID(s):
2019762 2019813
PAR ID:
10373191
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
2
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The increasing complexity and impacts of fire seasons in the United States have prompted efforts to improve early warning systems for wildland fire management. Outlooks of potential fire activity at lead‐times of several weeks can help in wildland fire resource allocation as well as complement short‐term meteorological forecasts for ongoing fire events. Here, we describe an experimental system for developing downscaled ensemble‐based subseasonal forecasts for the contiguous US using NCEP's operational Climate Forecast System version 2 model. These forecasts are used to calculate forecasted fire danger indices from the United States (US) National Fire Danger Rating System in addition to forecasts of evaporative demand. We further illustrate the skill of subseasonal forecasts on weekly timescales using hindcasts from 2011 to 2021. Results show that while forecast skill degrades with time, statistically significant week 3 correlative skill was found for 76% and 30% of the contiguous US for Energy Release Component and evaporative demand, respectively. These results highlight the potential value of experimental subseasonal forecasts in complementing existing information streams in weekly‐to‐monthly fire business decision making for suppression‐based decisions and geographic reallocation of resources during the fire season, as well for proactive fire management actions outside of the core fire season. 
    more » « less
  2. BackgroundWildfire simultaneity affects the availability and distribution of resources for fire management: multiple small fires require more resources to fight than one large fire does. AimsThe aim of this study was to project the effects of climate change on simultaneous large wildfires in the Western USA, regionalised by administrative divisions used for wildfire management. MethodsWe modelled historical wildfire simultaneity as a function of selected fire indexes using generalised linear models trained on observed climate and fire data from 1984 to 2016. We then applied these models to regional climate model simulations of the 21st century from the NA-CORDEX data archive. Key resultsThe results project increases in the number of simultaneous 1000+ acre (4+ km2) fires in every part of the Western USA at multiple return periods. These increases are more pronounced at higher levels of simultaneity, especially in the Northern Rockies region, which shows dramatic increases in the recurrence of high return levels. ConclusionsIn all regions, the models project a longer season of high simultaneity, with a slightly earlier start and notably later end. These changes would negatively impact the effectiveness of fire response. ImplicationsBecause firefighting decisions about resource distribution, pre-positioning, and suppression strategies consider simultaneity as a factor, these results underscore the importance of potential changes in simultaneity for fire management decision-making. 
    more » « less
  3. Background As fire seasons in the Western US intensify and lengthen, fire managers have been grappling with increases in simultaneous, significant incidents that compete for response resources and strain capacity of the current system. Aims To address this challenge, we explore a key research question: what precursors are associated with ignitions that evolve into incidents requiring high levels of response personnel? Methods We develop statistical models linking human, fire weather and fuels related factors with cumulative and peak personnel deployed. Key results Our analysis generates statistically significant models for personnel deployment based on precursors observable at the time and place of ignition. Conclusions We find that significant precursors for fire suppression resource deployment are location, fire weather, canopy cover, Wildland–Urban Interface category, and history of past fire. These results align partially with, but are distinct from, results of earlier research modelling expenditures related to suppression which include precursors such as total burned area which become observable only after an incident. Implications Understanding factors associated with both the natural system and the human system of decision-making that accompany high deployment fires supports holistic risk management given increasing simultaneity of ignitions and competition for resources for both fuel treatment and wildfire response. 
    more » « less
  4. null (Ed.)
    National and regional preparedness level (PL) designations support decisions about wildfire risk management. Such decisions occur across the fire season and influence pre-positioning of resources in areas of greatest fire potential, recall of personnel from off-duty status, requests for back-up resources from other areas, responses to requests to share resources with other regions during fire events, and decisions about fuel treatment and risk reduction, such as prescribed burning. In this paper, we assess the association between PLs assigned at national and regional (Northwest) scales and a set of predictors including meteorological and climate variables, wildfire activity and the mobilisation and allocation levels of fire suppression resources. To better understand the implicit weighting applied to these factors in setting PLs, we discern the qualitative and quantitative factors associated with PL designations by statistical analysis of the historical record of PLs across a range of conditions. Our analysis constitutes an important step towards efforts to forecast PLs and to support the future projection and anticipation of firefighting resource demand, thereby aiding wildfire risk management, planning and preparedness. 
    more » « less
  5. Understanding the indirect and interactive effects of environmental stressors is critical to planning conservation interventions, but such effects are poorly understood. For example, invasive species may modify fire effects by altering fire intensity or frequency, increasing or decreasing their abundance in response to fire, and/or changing the trajectory of post‐fire recovery. Without a clear understanding of the direct, indirect, and interactive effects of prescribed fire and invasive species on native plants, managers cannot design effective conservation measures and risk exacerbating invasion through fire or wasting resources on approaches that do not yield desired results. In this study, researchers worked directly with the manager of a wet meadow in southern Idaho to explore how prescribed fire would directly and indirectly impact an iconic native herb (Camassia quamash) in areas invaded by a perennial pasture grass (Alopecurus arundinaceus). We found that spring prescribed fire increased the abundance of invasiveA. arundinaceus, which indirectly strengthened its suppression ofC. quamashgrowth and reproduction. In contrast, fire reversed the negative influence ofA. arundinaceusonC. quamashsurvival. Survival rates ofC. quamashwere higher after fire in areas with greater invasive grass abundance. This study points to the importance of understanding the indirect and interactive effects of prescribed fire and invasives on native plants across their life cycle for restoration projects and suggests fire, at least in spring, is not an appropriate management strategy for reducingA. arundinaceusinvasion at this site. 
    more » « less