skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Downscaled subseasonal fire danger forecast skill across the contiguous United States
Abstract The increasing complexity and impacts of fire seasons in the United States have prompted efforts to improve early warning systems for wildland fire management. Outlooks of potential fire activity at lead‐times of several weeks can help in wildland fire resource allocation as well as complement short‐term meteorological forecasts for ongoing fire events. Here, we describe an experimental system for developing downscaled ensemble‐based subseasonal forecasts for the contiguous US using NCEP's operational Climate Forecast System version 2 model. These forecasts are used to calculate forecasted fire danger indices from the United States (US) National Fire Danger Rating System in addition to forecasts of evaporative demand. We further illustrate the skill of subseasonal forecasts on weekly timescales using hindcasts from 2011 to 2021. Results show that while forecast skill degrades with time, statistically significant week 3 correlative skill was found for 76% and 30% of the contiguous US for Energy Release Component and evaporative demand, respectively. These results highlight the potential value of experimental subseasonal forecasts in complementing existing information streams in weekly‐to‐monthly fire business decision making for suppression‐based decisions and geographic reallocation of resources during the fire season, as well for proactive fire management actions outside of the core fire season.  more » « less
Award ID(s):
2019762
PAR ID:
10419217
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Atmospheric Science Letters
Volume:
24
Issue:
8
ISSN:
1530-261X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Flash droughts are rapidly developing subseasonal climate extreme events that are manifested as suddenly decreased soil moisture, driven by increased evaporative demand and/or sustained precipitation deficits. Over each climate region in the contiguous United States (CONUS), we evaluated the forecast skill of weekly root-zone soil moisture (RZSM), evaporative demand (ETo), and relevant flash drought (FD) indices derived from two dynamic models [Goddard Earth Observing System model V2p1 (GEOS-V2p1) and Global Ensemble Forecast System version 12 (GEFSv12)] in the Subseasonal Experiment (SubX) project between years 2000 and 2019 against three reference datasets: Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2), North American Land Data Assimilation System, phase 2 (NLDAS-2), and GEFSv12 reanalysis. The EToand its forcing variables at lead week 1 have moderate-to-high anomaly correlation coefficient (ACC) skill (∼0.70–0.95) except downwelling shortwave radiation, and by weeks 3–4, predictability was low for all forcing variables (ACC < 0.5). RZSM (0–100 cm) for model GEFSv12 showed high skill at lead week 1 (∼0.7–0.85 ACC) in the High Plains, West, Midwest, and South CONUS regions when evaluated against GEFSv12 reanalysis but lower skill against MERRA-2 and NLDAS-2 and ACC skill are still close to 0.5 for lead weeks 3–4, better than EToforecasts. GEFSv12 analysis has not been evaluated against in situ observations and has substantial RZSM anomaly differences when compared to NLDAS-2, and our analysis identified GEFSv12 reforecast prediction limit, which can maximally achieve ACC ∼0.6 for RZSM forecasts between lead weeks 3 and 4. Analysis of major FD events reveals that GEFSv12 reforecast inconsistently captured the correct location of atmospheric and RZSM anomalies contributing to FD onset, suggesting the needs for improving the dynamic models’ assimilation and initialization procedures to improve subseasonal FD predictability. Significance StatementFlash droughts are rapidly developing climate extremes which reduce soil moisture through enhanced evaporative demand and precipitation deficits, and these events can have large impacts on the ecosystem and crop health. We evaluated the subseasonal forecast skill of soil moisture and evaporative demand against three reanalysis datasets and found that evaporative demand skill was similar between forecasts and reanalyses while soil moisture skill is dependent on the reference dataset. Skill of evaporative demand decreases rapidly after week 1, while soil moisture skill declines more slowly after week 1. Case studies for the 2012, 2017, and 2019 United States flash droughts identified that forecasts could capture rapid decreases in soil moisture in some regions but not consistently, implying that long-lead forecasts still need improvements before being used in early warning systems. Improvements in flash drought predictability at longer lead times will require less biased initial conditions, better model parameterizations, and improved representations of large-scale teleconnections. 
    more » « less
  2. Abstract Patterns of energy and available moisture can vary over small (<1 km) distances in mountainous terrain. Information on fuel and soil moisture conditions that resolves this variation could help to inform fire and drought management decisions. Here, we describe the development of TOPOFIRE, a web-based mapping system designed to provide finely resolved information on soil water balance, drought, and wildfire danger information for the contiguous United States. We developed 8-arc-second-resolution (~250 meter) daily historical, near real-time, and 4-day forecast radiation, temperature, humidity, and snow water equivalent data and used these grids to calculate a suite of drought and wildfire danger indices. Large differences in shortwave radiation and surface air temperature with aspect contribute to greater snow accumulation and delays in melt timing on north-facing slopes, delaying fuel conditioning on shaded slopes. These datasets will help advance our understanding of the role of topography in wildland fire spread and ecological effects. Integration with national programs like the Wildland Fire Assessment System, the Wildland Fire Decision Support System, and drought early warning systems could support more proactive management of wildland fires and refine the characterization of drought in mountainous regions of the United States. 
    more » « less
  3. null (Ed.)
    Abstract Although useful at short and medium ranges, current dynamical models provide little additional skill for precipitation forecasts beyond week 2 (14 days). However, recent studies have demonstrated that downstream forcing by the Madden–Julian oscillation (MJO) and quasi-biennial oscillation (QBO) influences subseasonal variability, and predictability, of sensible weather across North America. Building on prior studies evaluating the influence of the MJO and QBO on the subseasonal prediction of North American weather, we apply an empirical model that uses the MJO and QBO as predictors to forecast anomalous (i.e., categorical above- or below-normal) pentadal precipitation at weeks 3–6 (15–42 days). A novel aspect of our study is the application and evaluation of the model for subseasonal prediction of precipitation across the entire contiguous United States and Alaska during all seasons. In almost all regions and seasons, the model provides “skillful forecasts of opportunity” for 20%–50% of all forecasts valid weeks 3–6. We also find that this model skill is correlated with historical responses of precipitation, and related synoptic quantities, to the MJO and QBO. Finally, we show that the inclusion of the QBO as a predictor increases the frequency of skillful forecasts of opportunity over most of the contiguous United States and Alaska during all seasons. These findings will provide guidance to forecasters regarding the utility of the MJO and QBO for subseasonal precipitation outlooks. 
    more » « less
  4. As anthropogenic eutrophication and the associated increase of cyanobacteria continue to plague inland waterbodies, local officials are seeking novel methods to proactively manage water resources. Cyanobacteria are of particular concern to health officials due to their ability to produce dangerous hepatotoxins and neurotoxins, which can threaten waterbodies for recreational and drinking-water purposes. Presently, however, there is no cyanobacteria outlook that can provide advance warning of a potential threat at the seasonal time scale. In this study, a statistical model is developed utilizing local and global scale season-ahead hydroclimatic predictors to evaluate the potential for informative cyanobacteria biomass and associated beach closure forecasts across the June–August season for a eutrophic lake in Wisconsin (United States). This model is developed as part of a subseasonal to seasonal cyanobacteria forecasting system to optimize lake management across the peak cyanobacteria season. Model skill is significant in comparison to June–August cyanobacteria observations (Pearson correlation coefficient = 0.62, Heidke skill score = 0.38). The modeling framework proposed here demonstrates encouraging prediction skill and offers the possibility of advanced beach management applications. 
    more » « less
  5. null (Ed.)
    Abstract In this study, seasonal forecasts from the National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2 (CFSv2), are compared with station observations to assess their usefulness in producing accurate buildup index (BUI) forecasts for the fire season in Interior Alaska. These comparisons indicate that the CFSv2 June–July–August (JJA) climatology (1994–2017) produces negatively biased BUI forecasts because of negative temperature and positive precipitation biases. With quantile mapping (QM) correction, the temperature and precipitation forecasts better match the observations. The long-term JJA mean BUI improves from 12 to 42 when computed using the QM-corrected forecasts. Further postprocessing of the QM-corrected BUI forecasts using the quartile classification method shows anomalously high values for the 2004 fire season, which was the worst on record in terms of the area burned by wildfires. These results suggest that the QM-corrected CFSv2 forecasts can be used to predict extreme fire events. An assessment of the classified BUI ensemble members at the subseasonal scale shows that persistently occurring BUI forecasts exceeding 150 in the cumulative drought season can be used as an indicator that extreme fire events will occur during the upcoming season. This study demonstrates the ability of QM-corrected CFSv2 forecasts to predict the potential fire season in advance. This information could, therefore, assist fire managers in resource allocation and disaster response preparedness. 
    more » « less