skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Global‐Scale Mineral Dust Equation
Abstract A robust method to estimate mineral dust mass in ambient particulate matter (PM) is essential, as the dust fraction cannot be directly measured but is needed to understand dust impacts on the environment and human health. In this study, a global‐scale dust equation is developed that builds on the widely used Interagency Monitoring of Protected Visual Environments (IMPROVE) network's “soil” formula that is based on five measured elements (Al, Si, Ca, Fe, and Ti). We incorporate K, Mg, and Na into the equation using the mineral‐to‐aluminum (MAL) mass ratio of (K2O + MgO + Na2O)/Al2O3and apply a correction factor (CF) to account for other missing compounds. We obtain region‐specific MAL ratios and CFs by investigating the variation in dust composition across desert regions. To calculate reference dust mass for equation evaluation, we use total‐mineral‐mass (summing all oxides of crustal elements) and residual‐mass (subtracting non‐dust species from total PM) approaches. For desert dust in source regions, the normalized mean bias (NMB) of the global equation (within ±1%) is significantly smaller than the NMB of the IMPROVE equation (−6% to 10%). For PM2.5with high dust content measured by the IMPROVE network, the global equation estimates dust mass well (NMB within ±5%) at most sites. For desert dust transported to non‐source regions, the global equation still performs well (NMB within ±2%). The global equation can also represent paved road, unpaved road, and agricultural soil dust (NMB within ±5%). This global equation provides a promising approach for calculating dust mass based on elemental analysis of dust.  more » « less
Award ID(s):
2020673
PAR ID:
10373241
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
127
Issue:
18
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Atmospheric particulate matter (PM) in urban areas is derived from natural and anthropogenic sources, but it is difficult to identify how these various sources contribute to air quality. To characterize PM sources in an urban setting, we collected PM in three size fractions (PM2.5, PM10, and total suspended particulates, TSP) for two-week intervals from 2019 through 2021 in the Wasatch Front of northern Utah. The PM samples were analyzed for major and trace element concentrations and 87Sr/86Sr ratios. Using principal components analysis, we identified mineral dust, urban pollution, and fireworks as the primary PM sources affecting Wasatch Front air quality. Dust contributed Al, Be, Ca, Fe, Mg, Rb, Y, and REEs, which are typical components of carbonate and silicate minerals, with highest concentrations in the TSP fraction. Urban sources produced PM that was enriched in As, Cd, Mo, Pb, Sb, Se, and Tl, and fireworks smoke had high concentrations of Ba, Cr, Cu, K, Sr, and V. Dust events dominated PM chemistry during spring through fall, punctuated by fireworks smoke over the Independence Day holiday, while urban pollution dominated PM chemistry from November through February during winter inversions. 87Sr/86Sr ratios revealed that Sr was sourced from regional playas, local sediment, and fireworks. Strontium released from fireworks had relatively low 87Sr/86Sr ratios that dominated the PM isotopic composition during holidays. Sequential leaching showed that potentially harmful elements such as Se, Cd, and Cu were readily removed by weak acids, suggesting that they are readily available in the environment or through human inhalation. This is the first study to describe seasonal variations in PM chemistry in the Wasatch Front and serves as an example of investigating air quality in complex urban areas impacted by desert dust. 
    more » « less
  2. Abstract. Desert dust accounts for most of the atmosphere's aerosol burden by mass andproduces numerous important impacts on the Earth system. However, currentglobal climate models (GCMs) and land-surface models (LSMs) struggle toaccurately represent key dust emission processes, in part because ofinadequate representations of soil particle sizes that affect the dustemission threshold, surface roughness elements that absorb wind momentum,and boundary-layer characteristics that control wind fluctuations.Furthermore, because dust emission is driven by small-scale (∼ 1 km or smaller) processes, simulating the global cycle of desert dust inGCMs with coarse horizontal resolutions (∼ 100 km) presents afundamental challenge. This representation problem is exacerbated by dustemission fluxes scaling nonlinearly with wind speed above a threshold windspeed that is sensitive to land-surface characteristics. Here, we addressthese fundamental problems underlying the simulation of dust emissions inGCMs and LSMs by developing improved descriptions of (1) the effect of soiltexture on the dust emission threshold, (2) the effects of nonerodibleroughness elements (both rocks and green vegetation) on the surface windstress, and (3) the effects of boundary-layer turbulence on drivingintermittent dust emissions. We then use the resulting revised dust emissionparameterization to simulate global dust emissions in a standalone modelforced by reanalysis meteorology and land-surface fields. We further propose(4) a simple methodology to rescale lower-resolution dust emissionsimulations to match the spatial variability of higher-resolution emissionsimulations in GCMs. The resulting dust emission simulation showssubstantially improved agreement against regional dust emissionsobservationally constrained by inverse modeling. We thus find that ourrevised dust emission parameterization can substantially improve dustemission simulations in GCMs and LSMs. 
    more » « less
  3. Abstract. Nitrate (NO3-) aerosol is projected to increase dramatically in the coming decades and may become the dominant inorganic particle species. This is due to the continued strong decrease in SO2 emissions, which is not accompanied by a corresponding decrease in NOx and especially NH3 emissions. Thus, the radiative effect (RE) of NO3- aerosol may become more important than that of SO42- aerosol in the future. The physicochemical interactions of mineral dust particles with gas and aerosol tracers play an important role in influencing the overall RE of dust and non-dust aerosols but can be a major source of uncertainty due to their lack of representation in many global climate models. Therefore, this study investigates how and to what extent dust affects the current global NO3- aerosol radiative effect through both radiation (REari) and cloud interactions (REaci) at the top of the atmosphere (TOA). For this purpose, multiyear simulations nudged towards the observed atmospheric circulation were performed with the global atmospheric chemistry and climate model EMAC, while the thermodynamics of the interactions between inorganic aerosols and mineral dust were simulated with the thermodynamic equilibrium model ISORROPIA-lite. The emission flux of the mineral cations Na+, Ca2+, K+, and Mg2+ is calculated as a fraction of the total aeolian dust emission based on the unique chemical composition of the major deserts worldwide. Our results reveal positive and negative shortwave and longwave radiative effects in different regions of the world via aerosol–radiation interactions and cloud adjustments. Overall, the NO3- aerosol direct effect contributes a global cooling of −0.11 W m−2, driven by fine-mode particle cooling at short wavelengths. Regarding the indirect effect, it is noteworthy that NO3- aerosol exerts a global mean warming of +0.17 W m−2. While the presence of NO3- aerosol enhances the ability of mineral dust particles to act as cloud condensation nuclei (CCN), it simultaneously inhibits the formation of cloud droplets from the smaller anthropogenic particles. This is due to the coagulation of fine anthropogenic CCN particles with the larger nitrate-coated mineral dust particles, which leads to a reduction in total aerosol number concentration. This mechanism results in an overall reduced cloud albedo effect and is thus attributed as warming. 
    more » « less
  4. Abstract Soil drying and wetting cycles can produce pulses of nitric oxide (NO) and nitrous oxide (N2O) emissions with substantial effects on both regional air quality and Earth’s climate. While pulsed production of N emissions is ubiquitous across ecosystems, the processes governing pulse magnitude and timing remain unclear. We studied the processes producing pulsed NO and N2O emissions at two contrasting drylands, desert and chaparral, where despite the hot and dry conditions known to limit biological processes, some of the highest NO and N2O flux rates have been measured. We measured N2O and NO emissions every 30 min for 24 h after wetting soils with isotopically-enriched nitrate and ammonium solutions to determine production pathways and their timing. Nitrate was reduced to N2O within 15 min of wetting, with emissions exceeding 1000 ng N–N2O m−2 s−1and returning to background levels within four hours, but the pulse magnitude did not increase in proportion to the amount of ammonium or nitrate added. In contrast to N2O, NO was emitted over 24 h and increased in proportion to ammonium addition, exceeding 600 ng N–NO m−2 s−1in desert and chaparral soils. Isotope tracers suggest that both ammonia oxidation and nitrate reduction produced NO. Taken together, our measurements demonstrate that nitrate can be reduced within minutes of wetting summer-dry desert soils to produce large N2O emission pulses and that multiple processes contribute to long-lasting NO emissions. These mechanisms represent substantial pathways of ecosystem N loss that also contribute to regional air quality and global climate dynamics. 
    more » « less
  5. Abstract Deep exposures of soil profiles on Miocene or Mio-Pliocene alluvial deposits were studied along a 500 km N-S transect in the Atacama Desert. These ancient deposits, with excellent surface preservation, now stand many meters above a broad incised Plio-Pleistocene alluvial terrain. Total geochemical analyses and mass balance calculations allowed the establishment of elemental gains, losses, and redistribution in the soils. From north to south (presently hyperarid to arid), the ancient soils reveal an increase in losses of rock-forming elements (Si, Al, Fe, K, Mg). Additionally, rare earth elements (REE) show losses with increasing southerly latitude and systematic patterns with soil depth. Some REEs appear to be unique chemical tracers of exogenous dust and aerosol additions to the soils. The removal of major elements and REEs is impossible in the present climate (one of salt and dust accumulation), revealing that for a significant period following the deposition of the alluvium, soils were exposed to rainfall, chemical weathering, and mass loss—with a geographical pattern that mirrors the present rainfall gradient in the region. Following the cessation of weathering, the pre-weathered soils have undergone enormous dust and salt accumulations, with the rates and types of salt accumulation consistent with latitude: (1) carbonate in the south and (2) sulfate, chlorides, and nitrates to the north. The quantity, and apparent rates, of salt accumulation have a strong latitudinal trend. Isotopes of sulfate have predictable depth patterns based on isotope fractionation via vertical reaction and transport. The relict hyperarid soils are geochemically similar to buried Miocene soils (ca. 10–9 Ma) in the region, but they differ from older Miocene soils, which formed in more humid conditions. The overall soil record for the Atacama Desert appears to be the product of changes in Pacific Ocean sea surface temperatures over time, and resulting changes in rainfall. The mid-Miocene was relatively humid based on buried soil chemistry and evidence of fluvial activity. The mid to late Miocene cooling (ca. 10–5.5 Ma) appears to have aridified the region based on paleosol soil chemistry. Pliocene to earliest Pleistocene conditions caused weathering of the relict soils examined here, and regional fluvial activity. Since the earliest Pleistocene, the region has largely experienced the accumulation of salts and, except for smaller scale oscillations (glacial-interglacial), has experienced protracted hyperaridity. 
    more » « less