skip to main content


Title: Pathways to the density‐dependent expression of cannibalism, and consequences for regulated population dynamics
Abstract

Cannibalism, once viewed as a rare or aberrant behavior, is now recognized to be widespread and to contribute broadly to the self‐regulation of many populations. Cannibalism can produce endogenous negative feedback on population growth because it is expressed as a conditional behavior, responding to the deteriorating ecological conditions that flow, directly or indirectly, from increasing densities of conspecifics. Thus, cannibalism emerges as a strongly density‐dependent source of mortality. In this synthesis, we review recent research that has revealed a rich diversity of pathways through which rising density elicits increased cannibalism, including both factors that (a) elevate the rate of dangerous encounters between conspecifics and (b) enhance the likelihood that such encounters will lead to successful cannibalistic attacks. These pathways include both features of the autecology of cannibal populations and features of interactions with other species, including food resources and pathogens. Using mathematical models, we explore the consequences of including density‐dependent cannibal attack rates on population dynamics. The conditional expression of cannibalism generally enhances stability and population regulation in single‐species models but also may increase opportunities for alternative states and prey population escape from control by cannibalistic predators.

 
more » « less
Award ID(s):
1716803
NSF-PAR ID:
10373263
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology
Volume:
103
Issue:
10
ISSN:
0012-9658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Body size influences an individual's physiology and the nature of its intra‐ and interspecific interactions. Changes in this key functional trait can therefore have important implications for populations as well. For example, among invertebrates, there is typically a positive correlation between female body size and reproductive output. Increasing body size can consequently trigger changes in population density, population structure (e.g. adult to juvenile ratio) and the strength of intraspecific competition.

    Body size changes have been documented in several species in the Arctic, a region that is warming rapidly. In particular, wolf spiders, one of the most abundant arctic invertebrate predators, are becoming larger and therefore more fecund. Whether these changes are affecting their populations and role within food webs is currently unclear.

    We investigated the population structure and feeding ecology of the dominant wolf spider speciesPardosa lapponicaat two tundra sites where adult spiders naturally differ in mean body size. Additionally, we performed a mesocosm experiment to investigate how variation in wolf spider density, which is likely to change as a function of body size, influences feeding ecology and its sensitivity to warming.

    We found that juvenile abundance is negatively associated with female size and that wolf spiders occupied higher trophic positions where adult females were larger. Because female body size is positively related to fecundity inP. lapponica, the unexpected finding of fewer juveniles with larger females suggests an increase in density‐dependent cannibalism as a result of increased intraspecific competition for resources. Higher rates of density‐dependent cannibalism are further supported by the results from our mesocosm experiment, in which individuals occupied higher trophic positions in plots with higher wolf spider densities. We observed no changes in wolf spider feeding ecology in association with short‐term experimental warming.

    Our results suggest that body size variation in wolf spiders is associated with variation in intraspecific competition, feeding ecology and population structure. Given the widespread distribution of wolf spiders in arctic ecosystems, body size shifts in these predators as a result of climate change could have implications for lower trophic levels and for ecosystem functioning.

     
    more » « less
  2. Abstract

    Local density can affect individual performance by altering the strength of species interactions. Within many populations, local densities vary spatially (individuals are patchily distributed) or change across life stages, which should influence the selection and eco‐evolutionary feedback because local density variance affects mean fitness and is affected by traits of individuals. However, most studies on the evolutionary consequences of density‐dependent interactions focus on populations where local densities are relatively constant through time and space.

    We investigated the influence of spatial and ontogenetic variance in local densities within an insect population by comparing a model integrating both types of local density variance with models including only spatial variance, only ontogenetic variance, or no variance. We parameterized the models with experimental data, then used elasticity and invasion analyses to characterize selection on traits that affect either the local density an individual experiences (mean clutch size) or individuals' sensitivity to density (effect of larval crowding on pupal mass).

    Spatial and ontogenetic variance reduced population elasticity to effects of local density by 76% and 34% on average, respectively.

    Spatial variance modified selection and adaptive dynamics by altering the tradeoff between density‐dependent and density‐independent vital rates. In models including spatial variance, strategies that maximized density‐dependent survival were favoured over fecundity‐maximizing strategies even at low population density, counter to predictions of density‐dependent selection theory. Furthermore, only models that included spatial variance, thus linking the scales of oviposition and density‐dependent larval survival, had an evolutionarily stable clutch size.

    Ontogenetic variance weakened selection on mean clutch size and sensitivity to larval crowding by disrupting the relationship between trait values and performance during critical life stages.

    We demonstrate that local density variance can strongly modify selection at empirically observed interaction strengths and identify mechanisms for the effects of spatial and ontogenetic variance. Our findings reveal the potential for local density variance to mediate eco‐evolutionary feedback by shaping selection on demographically important traits.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  3. Abstract

    Adverse conditions may be the norm rather than the exception in natural populations. Many populations experience poor nutrition on a seasonal basis. Further, brief interludes of inbreeding can be common as population density fluctuates and because of habitat fragmentation. Here, we investigated the effects of poor nutrition and inbreeding on traits that can be very important to reproductive success and fitness in males: testes mass, sperm concentration, and sperm viability. Our study species wasNarnia femorata,a species introduced to north‐central Florida in the 1950s. This species encounters regular, seasonal changes in diet that can have profound phenotypic effects on morphology and behavior. We generated inbred and outbred individuals through a single generation of full‐sibling mating or outcrossing, respectively. All juveniles were provided a natural, high‐quality diet ofOpuntia humifusacactus cladode with fruit until they reached adulthood. New adult males were put on a high‐ or low‐quality diet for at least 21 days before measurements were taken. As expected, the low‐quality diet led to significantly decreased testes mass in both inbred and outbred males, although there were surprisingly no detectable effects on sperm traits. We did not find evidence that inbreeding affected testes mass, sperm concentration, and sperm viability. Our results highlight the immediate and overwhelming effects of nutrition on testes mass, while suggesting that a single generation of inbreeding might not be detrimental for primary sexual traits in this particular population.

     
    more » « less
  4. Migration is a tactic used across taxa to access resources in temporally heterogenous landscapes. Populations that migrate can attain higher abundances because such movements allow access to higher quality resources, or reduction in predation risk resulting in increased fitness. However, most migratory species occur in partially migratory populations, a mix of migratory and non-migratory individuals. It is thought that the portion of migrants in a partial migration population is maintained either through (1) a population-level evolutionary stable state where counteracting density-dependent vital rates act on migrants and residents to balance fitness or (2) conditional migration, where the propensity to migrate is influenced by the individual's state. However, in many respects, migration is also a form of habitat selection and the proportion of migrants and residents may be the result of density-dependent habitat selection. Here, we test whether the theory of Ideal Free Distribution (IFD) can explain the coexistence of different migratory tactics in a partially migratory population. IFD predicts individuals exhibit density-dependent vital rates and select different migratory tactics to maximize individual fitness resulting in equal fitness (λ) between tactics. We tested the predictions of IFD in a partially migratory elk population that declined by 70% with 19 years of demographic data and migratory tactic switching rates from >300 individuals. We found evidence of density dependence for resident pregnancy and adult female survival providing a fitness incentive to switch tactics. Despite differences in vital rates between migratory tactics, mean λ (fitness) was equal. However, as predicted by the IFD, individuals switched tactics toward those of higher fitness. Our analysis reveals that partial migration may be driven by tactic selection that follows the ideal free distribution. These findings reinforce that migration across taxa may be a polymorphic behavior in large herbivores where migratory tactic selection is determined by differential costs and benefits, mediated by density dependence. 
    more » « less
  5. Abstract

    Climate warming is predicted to increase mean temperatures and thermal extremes on a global scale. Because their body temperature depends on the environmental temperature, ectotherms bear the full brunt of climate warming. Predicting the impact of climate warming on ectotherm diversity and distributions requires a framework that can translate temperature effects on ectotherm life‐history traits into population‐ and community‐level outcomes. Here we present a mechanistic theoretical framework that can predict the fundamental thermal niche and climate envelope of ectotherm species based on how temperature affects the underlying life‐history traits. The advantage of this framework is twofold. First, it can translate temperature effects on the phenotypic traits of individual organisms to population‐level patterns observed in nature. Second, it can predict thermal niches and climate envelopes based solely on trait response data and, hence, completely independently of any population‐level information. We find that the temperature at which the intrinsic growth rate is maximized exceeds the temperature at which abundance is maximized under density‐dependent growth. As a result, the temperature at which a species will increase the fastest when rare is lower than the temperature at which it will recover from a perturbation the fastest when abundant. We test model predictions using data from a naturalized–invasive interaction to identify the temperatures at which the invasive can most easily invade the naturalized's habitat and the naturalized is most likely to resist the invasive. The framework is sufficiently mechanistic to yield reliable predictions for individual species and sufficiently broad to apply across a range of ectothermic taxa. This ability to predict the thermal niche before a species encounters a new thermal environment is essential to mitigating some of the major effects of climate change on ectotherm populations around the globe.

     
    more » « less