skip to main content

Title: Pathways to the density‐dependent expression of cannibalism, and consequences for regulated population dynamics

Cannibalism, once viewed as a rare or aberrant behavior, is now recognized to be widespread and to contribute broadly to the self‐regulation of many populations. Cannibalism can produce endogenous negative feedback on population growth because it is expressed as a conditional behavior, responding to the deteriorating ecological conditions that flow, directly or indirectly, from increasing densities of conspecifics. Thus, cannibalism emerges as a strongly density‐dependent source of mortality. In this synthesis, we review recent research that has revealed a rich diversity of pathways through which rising density elicits increased cannibalism, including both factors that (a) elevate the rate of dangerous encounters between conspecifics and (b) enhance the likelihood that such encounters will lead to successful cannibalistic attacks. These pathways include both features of the autecology of cannibal populations and features of interactions with other species, including food resources and pathogens. Using mathematical models, we explore the consequences of including density‐dependent cannibal attack rates on population dynamics. The conditional expression of cannibalism generally enhances stability and population regulation in single‐species models but also may increase opportunities for alternative states and prey population escape from control by cannibalistic predators.

more » « less
Award ID(s):
Author(s) / Creator(s):
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Body size influences an individual's physiology and the nature of its intra‐ and interspecific interactions. Changes in this key functional trait can therefore have important implications for populations as well. For example, among invertebrates, there is typically a positive correlation between female body size and reproductive output. Increasing body size can consequently trigger changes in population density, population structure (e.g. adult to juvenile ratio) and the strength of intraspecific competition.

    Body size changes have been documented in several species in the Arctic, a region that is warming rapidly. In particular, wolf spiders, one of the most abundant arctic invertebrate predators, are becoming larger and therefore more fecund. Whether these changes are affecting their populations and role within food webs is currently unclear.

    We investigated the population structure and feeding ecology of the dominant wolf spider speciesPardosa lapponicaat two tundra sites where adult spiders naturally differ in mean body size. Additionally, we performed a mesocosm experiment to investigate how variation in wolf spider density, which is likely to change as a function of body size, influences feeding ecology and its sensitivity to warming.

    We found that juvenile abundance is negatively associated with female size and that wolf spiders occupied higher trophic positions where adult females were larger. Because female body size is positively related to fecundity inP. lapponica, the unexpected finding of fewer juveniles with larger females suggests an increase in density‐dependent cannibalism as a result of increased intraspecific competition for resources. Higher rates of density‐dependent cannibalism are further supported by the results from our mesocosm experiment, in which individuals occupied higher trophic positions in plots with higher wolf spider densities. We observed no changes in wolf spider feeding ecology in association with short‐term experimental warming.

    Our results suggest that body size variation in wolf spiders is associated with variation in intraspecific competition, feeding ecology and population structure. Given the widespread distribution of wolf spiders in arctic ecosystems, body size shifts in these predators as a result of climate change could have implications for lower trophic levels and for ecosystem functioning.

    more » « less
  2. Abstract

    Local density can affect individual performance by altering the strength of species interactions. Within many populations, local densities vary spatially (individuals are patchily distributed) or change across life stages, which should influence the selection and eco‐evolutionary feedback because local density variance affects mean fitness and is affected by traits of individuals. However, most studies on the evolutionary consequences of density‐dependent interactions focus on populations where local densities are relatively constant through time and space.

    We investigated the influence of spatial and ontogenetic variance in local densities within an insect population by comparing a model integrating both types of local density variance with models including only spatial variance, only ontogenetic variance, or no variance. We parameterized the models with experimental data, then used elasticity and invasion analyses to characterize selection on traits that affect either the local density an individual experiences (mean clutch size) or individuals' sensitivity to density (effect of larval crowding on pupal mass).

    Spatial and ontogenetic variance reduced population elasticity to effects of local density by 76% and 34% on average, respectively.

    Spatial variance modified selection and adaptive dynamics by altering the tradeoff between density‐dependent and density‐independent vital rates. In models including spatial variance, strategies that maximized density‐dependent survival were favoured over fecundity‐maximizing strategies even at low population density, counter to predictions of density‐dependent selection theory. Furthermore, only models that included spatial variance, thus linking the scales of oviposition and density‐dependent larval survival, had an evolutionarily stable clutch size.

    Ontogenetic variance weakened selection on mean clutch size and sensitivity to larval crowding by disrupting the relationship between trait values and performance during critical life stages.

    We demonstrate that local density variance can strongly modify selection at empirically observed interaction strengths and identify mechanisms for the effects of spatial and ontogenetic variance. Our findings reveal the potential for local density variance to mediate eco‐evolutionary feedback by shaping selection on demographically important traits.

    Read the freePlain Language Summaryfor this article on the Journal blog.

    more » « less
  3. Migration is a tactic used across taxa to access resources in temporally heterogenous landscapes. Populations that migrate can attain higher abundances because such movements allow access to higher quality resources, or reduction in predation risk resulting in increased fitness. However, most migratory species occur in partially migratory populations, a mix of migratory and non-migratory individuals. It is thought that the portion of migrants in a partial migration population is maintained either through (1) a population-level evolutionary stable state where counteracting density-dependent vital rates act on migrants and residents to balance fitness or (2) conditional migration, where the propensity to migrate is influenced by the individual's state. However, in many respects, migration is also a form of habitat selection and the proportion of migrants and residents may be the result of density-dependent habitat selection. Here, we test whether the theory of Ideal Free Distribution (IFD) can explain the coexistence of different migratory tactics in a partially migratory population. IFD predicts individuals exhibit density-dependent vital rates and select different migratory tactics to maximize individual fitness resulting in equal fitness (λ) between tactics. We tested the predictions of IFD in a partially migratory elk population that declined by 70% with 19 years of demographic data and migratory tactic switching rates from >300 individuals. We found evidence of density dependence for resident pregnancy and adult female survival providing a fitness incentive to switch tactics. Despite differences in vital rates between migratory tactics, mean λ (fitness) was equal. However, as predicted by the IFD, individuals switched tactics toward those of higher fitness. Our analysis reveals that partial migration may be driven by tactic selection that follows the ideal free distribution. These findings reinforce that migration across taxa may be a polymorphic behavior in large herbivores where migratory tactic selection is determined by differential costs and benefits, mediated by density dependence. 
    more » « less
  4. As biological invasions continue to increase globally, eradication programs have been undertaken at significant cost, often without consideration of relevant ecological theory. Theoretical fisheries models have shown that harvest can actually increase the equilibrium size of a population, and uncontrolled studies and anecdotal reports have documented population increases in response to invasive species removal (akin to fisheries harvest). Both findings may be driven by high levels of juvenile survival associated with low adult abundance, often referred to as overcompensation. Here we show that in a coastal marine ecosystem, an eradication program resulted in stage-specific overcompensation and a 30-fold, single-year increase in the population of an introduced predator. Data collected concurrently from four adjacent regional bays without eradication efforts showed no similar population increase, indicating a local and not a regional increase. Specifically, the eradication program had inadvertently reduced the control of recruitment by adults via cannibalism, thereby facilitating the population explosion. Mesocosm experiments confirmed that adult cannibalism of recruits was size-dependent and could control recruitment. Genomic data show substantial isolation of this population and implicate internal population dynamics for the increase, rather than recruitment from other locations. More broadly, this controlled experimental demonstration of stage-specific overcompensation in an aquatic system provides an important cautionary message for eradication efforts of species with limited connectivity and similar life histories.

    more » « less
  5. Abstract

    Major disturbances can temporarily remove factors that otherwise constrain population abundance and distribution. During such windows of relaxed top‐down and/or bottom‐up control, ungulate populations can grow rapidly, eventually leading to resource depletion and density‐dependent expansion into less‐preferred habitats. Although many studies have explored the demographic outcomes and ecological impacts of these processes, fewer have examined the individual‐level mechanisms by which they occur. We investigated these mechanisms in Gorongosa National Park, where the Mozambican Civil War devastated large‐mammal populations between 1977 and 1992. Gorongosa’s recovery has been marked by proliferation of waterbuck (Kobus ellipsiprymnus), an historically marginal 200‐kg antelope species, which is now roughly 20‐fold more abundant than before the war. We show that after years of unrestricted population growth, waterbuck have depleted food availability in their historically preferred floodplain habitat and have increasingly expanded into historically avoided savanna habitat. This expansion was demographically skewed: mixed‐sex groups of prime‐age individuals remained more common in the floodplain, while bachelors, loners, and subadults populated the savanna. By coupling DNA metabarcoding and forage analysis, we show that waterbuck in these two habitats ate radically different diets, which were more digestible and protein‐rich in the floodplain than in savanna; thus, although individuals in both habitats achieved positive net energy balance, energetic performance was higher in the floodplain. Analysis of daily activity patterns from high‐resolution GPS‐telemetry, accelerometry, and animal‐borne video revealed that savanna waterbuck spent less time eating, perhaps to accommodate their tougher, lower‐quality diets. Waterbuck in savanna also had more ectoparasites than those in the floodplain. Thus, plasticity in foraging behavior and diet selection enabled savanna waterbuck to tolerate the costs of density‐dependent spillover, at least in the short term; however, the already poorer energetic performance of these individuals implies that savanna occupancy may become prohibitively costly as heterospecific competitors and predators continue to recover in Gorongosa. Our results suggest that behavior can provide a leading indicator of the onset of density‐dependent limitation and the likelihood of subsequent population decline, but that reliable inference hinges on understanding the mechanistic basis of observed behavioral shifts.

    more » « less