skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Resolving Continental Magma Reservoirs With 3D Surface Wave Tomography
Abstract Surface wave tomography is widely used to improve our understanding of continental magma reservoirs that may be capable of fueling explosive volcanic eruptions. However, traditional surface wave tomography based on inversions for phase velocity maps and locally 1D shear velocity may have difficulty resolving strong 3D low‐velocity anomalies associated with crustal magma reservoirs. Here, we perform synthetic tomography experiments based on 3D seismic waveform simulations to understand how the limitations of surface wave tomography could affect interpretations of tomography in volcanic settings. We focus our modeling on the Yellowstone volcanic system, one of the largest and most thoroughly studied continental magmatic systems, and explore scenarios in which the maximum shear velocity anomaly associated with the crustal magma reservoir ranges between −10% and −66%. We find that even with the well‐instrumented setting near Yellowstone, the recovered shear velocity anomalies in the mid‐to‐upper crust are severely diminished due to the small spatial scale of the reservoir with respect to the seismic wavelengths that sample it. In particular, recoveredVSanomalies could be reduced by a factor of two or more, implying that the inferred melt fraction of large‐scale continental magma reservoirs may be considerably underestimated.  more » « less
Award ID(s):
1950328 1942431
PAR ID:
10373298
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
23
Issue:
8
ISSN:
1525-2027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Volcanic arcs consist of many distinct vents that are ultimately fueled by the common melting processes in the subduction zone mantle wedge. Seismic imaging of crustal‐scale magmatic systems can provide insight into how melt is organized in the deep crust and eventually focused beneath distinct vents as it ascends and evolves. Here, we investigate the crustal‐scale structure beneath a section of the Cascades arc spanning four major stratovolcanoes: Mt. Hood, Mt. St. Helens (MSH), Mt. Adams (MA), and Mt. Rainier, based on ambient noise data from 234 seismographs. Simultaneous inversion of Rayleigh and Love wave dispersion constrains the isotropic shear velocity (Vs) and identifies radially anisotropic structures. IsotropicVsshows two sub‐parallel low‐Vszones (∼3.45–3.55 km/s) at ∼15–30 km depth with one connecting Mt. Rainier to MA, and another connecting MSH to Mt. Hood, which are interpreted as deep crustal magma reservoirs containing up to ∼2.5%–6% melt, assuming near‐equilibrium melt geometry. Negative radial anisotropy, from vertical fractures like dikes, is prevalent in this part of the Cascadia, but is interrupted by positive radial anisotropy, from subhorizontal features like sills, extending vertically beneath MA and Mt. Rainier at ∼10–30 km depth and weaker and west‐dipping positive anisotropy beneath MSH. The positive anisotropy regions are adjacent to rather than co‐located with the isotropic low‐Vsanomalies. Ascending melt that stalled and mostly crystallized in sills with possible compositional differences from the country rock may explain the near‐averageVsand positive radial anisotropy adjacent to the active deep crustal magma reservoirs. 
    more » « less
  2. Abstract Determining the spatial relations between volcanic edifices and their underlying magma storage zones is fundamental for characterizing long‐term evolution and short‐term unrest. We compile centroid locations of upper crustal magma reservoirs at 56 arc volcanoes inferred from seismic, magnetotelluric, and geodetic studies. We show that magma reservoirs are often horizontally offset from their associated volcanic edifices by multiple kilometers, and the degree of offset broadly scales with reservoir depth. Approximately 20% of inferred magma reservoir centroids occur outside of the overlying volcano's mean radius. Furthermore, reservoir offset is inversely correlated with edifice size. Taking edifice volume as a proxy for long‐term magmatic flux, we suggest that high flux or prolonged magmatism leads to more centralized magma storage beneath arc volcanoes by overprinting upper crustal heterogeneities that would otherwise affect magma ascent. Edifice volumes therefore reflect the spatial distribution of underlying magma storage, which could help guide monitoring strategies at volcanoes. 
    more » « less
  3. Seismic imaging methods have provided detailed three-dimensional constraints on the physical properties of magmatic systems leading to invaluable insight into the storage, differentiation and dynamics of magma. These constraints have been crucial to the development of our modern understanding of magmatic systems. However, there are still outstanding knowledge gaps resulting from the challenges inherent in seismic imaging of volcanoes. These challenges stem from the complex physics of wave propagation across highly heterogeneous low-velocity anomalies associated with magma reservoirs. Ray-based seismic imaging methods such as travel-time and surface-wave tomography lead to under-recovery of such velocity anomalies and to under-estimation of melt fractions. This review aims to help the volcanologist to fully utilize the insights gained from seismic imaging and account for the resolution limits. We summarize the advantages and limitations of the most common imaging methods and propose best practices for their implementation and the quantitative interpretation of low-velocity anomalies. We constructed and analysed a database of 277 seismic imaging studies at 78 arc, hotspot and continental rift volcanoes. Each study is accompanied by information about the seismic source, part of the wavefield used, imaging method, any detected low-velocity zones, and estimated melt fraction. Thirty nine studies attempted to estimate melt fractions at 22 different volcanoes. Only five studies have found evidence of melt storage at melt fractions above the critical porosity that separates crystal mush from mobile magma. The median reported melt fraction is 13% suggesting that magma storage is dominated by low-melt fraction crystal mush. However, due to the limits of seismic resolution, the seismological evidence does not rule out the presence of small (<10 km 3 ) and medium-sized (<100 km 3 ) high-melt fraction magma chambers at many of the studied volcanoes. The combination of multiple tomographic imaging methods and the wider adoption of methods that use more of the seismic wavefield than the first arriving travel-times, promise to overcome some of the limitations of seismic tomography and provide more reliable constraints on melt fractions. Wider adoption of these new methods and advances in data collection are needed to enable a revolution in imaging magma reservoirs. 
    more » « less
  4. Abstract The Laguna del Maule (LdM) volcanic field comprises the greatest concentration of postglacial rhyolite in the Andes and includes the products of ~40 km3of explosive and effusive eruptions. Recent observations at LdM by interferometric synthetic aperture radar and global navigation satellite system geodesy have revealed inflation at rates exceeding 20 cm/year since 2007, capturing an ongoing period of growth of a potentially large upper crustal magma reservoir. Moreover, magnetotelluric and gravity studies indicate the presence of fluids and/or partial melt in the upper crust near the center of inflation. Petrologic observations imply repeated, rapid extraction of rhyolitic melt from crystal mush stored at depths of 4–6 km during at least the past 26 ka. We utilize multiple types of surface‐wave observations to constrain the location and geometry of low‐velocity domains beneath LdM. We present a three‐dimensional shear‐wave velocity model that delineates a ~450‐km3shallow magma reservoir ~2 to 8 km below surface with an average melt fraction of ~5%. Interpretation of the seismic tomography in light of existing gravity, magnetotelluric, and geodetic observations supports this model and reveals variations in melt content and a deeper magma system feeding the shallow reservoir in greater detail than any of the geophysical methods alone. Geophysical imaging of the LdM magma system today is consistent with the petrologic inferences of the reservoir structure and growth during the past 20–60 kyr. Taken together with the ongoing unrest, a future rhyolite eruption of at least the scale of those common during the Holocene is a reasonable possibility. 
    more » « less
  5. Lithospheric weakening mechanisms in non-volcanic segments of active continental rifts remain poorly understood, raising important questions about the geodynamic processes that drive magma-poor rifting. Here, we investigate the crustal and uppermost mantle structure beneath the non-volcanic Albertine-Rhino Graben (ARG) and the adjoining volcanic Edward-George Rift (EGR), East Africa. The ARG exhibits anomalous focusing of intra-rift faulting typically associated with magma-rich, early-stage rifts. Through field observations of rift structures, combined with 3D inversions and 2D forward modeling of gravity data, we investigate the potential controls on intra-rift tectonic strain in a setting with little to no magmatism. Field ground-truthing in the southern ARG reveals prominent rift-axial basement-rooted faulting that post-dates the establishment of border faults. Gravity inversion results show low-density anomalies extending from the surface to about 50 km depth beneath both the EGR and southern ARG, with the strongest anomalies under the ARG at around 15 km. 2D gravity modeling suggests that the lower crust and uppermost mantle are both thinned and less dense beneath these rift segments. In the EGR, crustal thinning and low-density anomalies align with low P-wave velocity zones, suggesting the presence of melt. Given the similar degree of crustal thinning and de-densification in the southern ARG, we infer that trapped lower-crustal melts may also exist beneath the rift, potentially contributing to the early focusing of intra-rift strain. We propose that in non-volcanic rifts, deep, unexposed (‘blind’) melts may play a key role in mechanical weakening of the lithosphere, enabling continued tectonic extension even in the absence of significant surface volcanism. 
    more » « less