skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bloom-Net: Blockwise Optimization for Masking Networks Toward Scalable and Efficient Speech Enhancement
In this paper, we present a blockwise optimization method for masking-based networks (BLOOM-Net) for training scalable speech enhancement networks. Here, we design our network with a residual learning scheme and train the internal separator blocks sequentially to obtain a scalable masking-based deep neural network for speech enhancement. Its scalability lets it dynamically adjust the run-time complexity depending on the test time environment. To this end, we modularize our models in that they can flexibly accommodate varying needs for enhancement performance and constraints on the resources, incurring minimal memory or training overhead due to the added scalability. Our experiments on speech enhancement demonstrate that the proposed blockwise optimization method achieves the desired scalability with only a slight performance degradation compared to corresponding models trained end-to-end.  more » « less
Award ID(s):
1909509 2046963
PAR ID:
10373341
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE International Conference on Acoustics, Speech and Signal Processing
Page Range / eLocation ID:
366 to 370
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Speech enhancement techniques that use a generative adversarial network (GAN) can effectively suppress noise while allowing models to be trained end-to-end. However, such techniques directly operate on time-domain waveforms, which are often highly-dimensional and require extensive computation. This paper proposes a novel GAN-based speech enhancement method, referred to as S-ForkGAN, that operates on log-power spectra rather than on time-domain speech waveforms, and uses a forked GAN structure to extract both speech and noise information. By operating on log-power spectra, one can seamlessly include conventional spectral subtraction techniques, and the parameter space typically has a lower dimension. The performance of S-ForkGAN is assessed for automatic speech recognition (ASR) using the TIMIT data set and a wide range of noise conditions. It is shown that S-ForkGAN outperforms existing GAN-based techniques and that it has a lower complexity. 
    more » « less
  2. null (Ed.)
    Speech enhancement is an essential component in robust automatic speech recognition (ASR) systems. Most speech enhancement methods are nowadays based on neural networks that use feature-mapping or mask-learning. This paper proposes a novel speech enhancement method that integrates time-domain feature mapping and mask learning into a unified framework using a Generative Adversarial Network (GAN). The proposed framework processes the received waveform and decouples speech and noise signals, which are fed into two short-time Fourier transform (STFT) convolution 1-D layers that map the waveforms to spectrograms in the complex domain. These speech and noise spectrograms are then used to compute the speech mask loss. The proposed method is evaluated using the TIMIT data set for seen and unseen signal-to-noise ratio conditions. It is shown that the proposed method outperforms the speech enhancement methods that use Deep Neural Network (DNN) based speech enhancement or a Speech Enhancement Generative Adversarial Network (SEGAN). 
    more » « less
  3. In realistic speech enhancement settings for end-user devices, we often encounter only a few speakers and noise types that tend to reoccur in the specific acoustic environment. We propose a novel personalized speech enhancement method to adapt a compact denoising model to the test-time specificity. Our goal in this test-time adaptation is to utilize no clean speech target of the test speaker, thus fulfilling the requirement for zero-shot learning. To complement the lack of clean speech, we employ the knowledge distillation framework: we distill the more advanced denoising results from an overly large teacher model, and use them as the pseudo target to train the small student model. This zero-shot learning procedure circumvents the process of collecting users' clean speech, a process that users are reluctant to comply due to privacy concerns and technical difficulty of recording clean voice. Experiments on various test-time conditions show that the proposed personalization method can significantly improve the compact models' performance during the test time. Furthermore, since the personalized models outperform larger non-personalized baseline models, we claim that personalization achieves model compression with no loss of denoising performance. As expected, the student models underperform the state-of-the-art teacher models. 
    more » « less
  4. This paper presents a novel zero-shot learning approach towards personalized speech enhancement through the use of a sparsely active ensemble model. Optimizing speech denoising systems towards a particular test-time speaker can improve performance and reduce run-time complexity. However, test-time model adaptation may be challenging if collecting data from the test-time speaker is not possible. To this end, we propose using an ensemble model wherein each specialist module denoises noisy utterances from a distinct partition of training set speakers. The gating module inexpensively estimates test-time speaker characteristics in the form of an embedding vector and selects the most appropriate specialist module for denoising the test signal. Grouping the training set speakers into non-overlapping semantically similar groups is non-trivial and ill-defined. To do this, we first train a Siamese network using noisy speech pairs to maximize or minimize the similarity of its output vectors depending on whether the utterances derive from the same speaker or not. Next, we perform k-means clustering on the latent space formed by the averaged embedding vectors per training set speaker. In this way, we designate speaker groups and train specialist modules optimized around partitions of the complete training set. Our experiments show that ensemble models made up of low-capacity specialists can outperform high-capacity generalist models with greater efficiency and improved adaptation towards unseen test-time speakers. 
    more » « less
  5. Neural networks hold a critical domain in machine learning algorithms because of their self-adaptiveness and state-of-the-art performance. Before the testing (inference) phases in practical use, sophisticated training (learning) phases are required, calling for efficient training methods with higher accuracy and shorter converging time. Many existing studies focus on the training optimization on high-performance servers or computing clusters, e.g. GPU clusters. However, training neural networks on resource-constrained devices, e.g. mobile platforms, is an important research topic barely touched. In this paper, we implement AdaLearner–an adaptive distributed mobile learning system for neural networks that trains a single network with heterogenous mobile resources under the same local network in parallel. To exploit the potential of our system, we adapt neural networks training phase to mobile device-wise resources and fiercely decrease the transmission overhead for better system scalability. On three representative neural network structures trained from two image classification datasets, AdaLearner boosts the training phase significantly. For example, on LeNet, 1.75-3.37⇥ speedup is achieved when increasing the worker nodes from 2 to 8, thanks to the achieved high execution parallelism and excellent scalability. 
    more » « less