Monitoring diseases within tree canopies is challenging due to their inaccessibility and the complexity of canopy ecosystems. Here, we explore the potential of stemflow sampling as a novel, ground-based method for detecting and monitoring canopy-associated pathogens. In a case study focused on Litylenchus crenatae ssp. mccannii (LCM), the nematode associated with Beech Leaf Disease (BLD), we collected stemflow samples from 18 Fagus grandifolia Ehrh. (American beech) trees across 12 storm events. eDNA assays detected LCM presence in 7 of those storms, with quantitative PCR-derived gene concentrations ranging from 80 to 158,000 copies mL−1. Higher detections and concentrations coincided with leaf senescence and bud formation periods, and they correlated conditionally with event rainfall amount and pre-storm changes in relative humidity. Although based on a single site and season, these findings demonstrate the potential for stemflow sampling to capture a pathogen’s eDNA (i.e., canopy distress signals) at ground level. This method could complement traditional monitoring, offering another affordable, non-invasive tool for pathogen detection. Additional validation, particularly regarding live versus dead organisms and across varied site conditions, will be essential to evaluate the breadth of value stemflow eDNA offers for canopy disease management and ecological research.
more »
« less
A combined approach for early in-field detection of beech leaf disease using near-infrared spectroscopy and machine learning
The ability to detect diseased trees before symptoms emerge is key in forest health management because it allows for more timely and targeted intervention. The objective of this study was to develop an in-field approach for early and rapid detection of beech leaf disease (BLD), an emerging disease of American beech trees, based on supervised classification models of leaf near-infrared (NIR) spectral profiles. To validate the effectiveness of the method we also utilized a qPCR-based protocol for the quantification of the newly identified foliar nematode identified as the putative causal agent of BLD, Litylenchus crenatae ssp. mccannii (LCM). NIR spectra were collected in May, July, and September of 2021 and analyzed using support vector machine and random forest algorithms. For the May and July datasets, the models accurately predicted pre-symptomatic leaves (highest testing accuracy = 100%), but also accurately discriminated the spectra based on geographic location (highest testing accuracy = 90%). Therefore, we could not conclude that spectral differences were due to pathogen presence alone. However, the September dataset removed location as a factor and the models accurately discriminated pre-symptomatic from naïve samples (highest testing accuracy = 95.9%). Five spectral bands (2,220, 2,400, 2,346, 1,750, and 1,424 nm), selected using variable selection models, were shared across all models, indicating consistency with respect to phytochemical induction by LCM infection of pre-symptomatic leaves. Our results demonstrate that this technique holds high promise as an in-field diagnostic tool for BLD.
more »
« less
- Award ID(s):
- 1638999
- PAR ID:
- 10373356
- Date Published:
- Journal Name:
- Frontiers in Forests and Global Change
- Volume:
- 5
- ISSN:
- 2624-893X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The U.S. wine and grape industry loses $3B annually due to viral diseases including grapevine leafroll-associated virus complex 3 (GLRaV-3). Current detection methods are labor-intensive and expensive. GLRaV-3 has a latent period in which the vines are infected but do not display visible symptoms, making it an ideal model to evaluate the scalability of imaging spectroscopy-based disease detection. The NASA Airborne Visible and Infrared Imaging Spectrometer Next Generation was deployed to detect GLRaV-3 in Cabernet Sauvignon grapevines in Lodi, CA in September 2020. Foliage was removed from the vines as part of mechanical harvest soon after image acquisition. In September of both 2020 and 2021, industry collaborators scouted 317 hectares on a vine-by-vine basis for visible viral symptoms and collected a subset for molecular confirmation testing. Symptomatic grapevines identified in 2021 were assumed to have been latently infected at the time of image acquisition. Random forest models were trained on a spectroscopic signal of noninfected and GLRaV-3 infected grapevines balanced with synthetic minority oversampling of noninfected and GLRaV-3 infected grapevines. The models were able to differentiate between noninfected and GLRaV-3 infected vines both pre- and postsymptomatically at 1 to 5 m resolution. The best-performing models had 87% accuracy distinguishing between noninfected and asymptomatic vines, and 85% accuracy distinguishing between noninfected and asymptomatic + symptomatic vines. The importance of nonvisible wavelengths suggests that this capacity is driven by disease-induced changes to plant physiology. The results lay a foundation for using the forthcoming hyperspectral satellite Surface Biology and Geology for regional disease monitoring in grapevine and other crop species. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .more » « less
-
Measuring the chemical traits of leaf litter is important for understanding plants’ influence on nutrient cycles, including through nutrient resorption and litter decomposition, but conventional leaf trait measurements are often destructive and labor-intensive. Here, we develop and evaluate the performance of partial least-squares regression models that use reflectance spectra of intact or ground leaves to estimate leaf litter traits, including carbon and nitrogen concentration, carbon fractions, and leaf mass per area (LMA). Our analyses included more than 300 samples of senesced foliage from 11 species of temperate trees, including both needleleaf and broadleaf species. Across all samples, we could predict each trait with moderate-to-high accuracy from both intact-leaf litter spectra (validation R2 = 0.543–0.941; %root mean squared error (RMSE) = 7.49–18.5) and ground-leaf litter spectra (validation R2 = 0.491–0.946; %RMSE = 7.00–19.5). Notably, intact-leaf spectra yielded better predictions of LMA. Our results support the feasibility of building models to estimate multiple chemical traits from leaf litter of a range of species. In particular, intact-leaf spectral models allow non-destructive trait estimation in a matter of seconds, which could enable researchers to measure the same leaves over time in studies of nutrient resorption.more » « less
-
More than ever, ecologists seek to employ herbarium collections to estimate plant functional traits from the past and across biomes. However, many trait measurements are destructive, which may preclude their use on valuable specimens. Researchers increasingly use reflectance spectroscopy to estimate traits from fresh or ground leaves, and to delimit or identify taxa. Here, we extend this body of work to non-destructive measurements on pressed, intact leaves, like those in herbarium collections. Using 618 samples from 68 species, we used partial least-squares regression to build models linking pressed-leaf reflectance spectra to a broad suite of traits, including leaf mass per area (LMA), leaf dry matter content (LDMC), equivalent water thickness, carbon fractions, pigments, and twelve elements. We compared these models to those trained on fresh- or ground-leaf spectra of the same samples. The traits our pressed-leaf models could estimate best were LMA (R2 = 0.932; %RMSE = 6.56), C (R2 = 0.855; %RMSE = 9.03), and cellulose (R2 = 0.803; %RMSE = 12.2), followed by water-related traits, certain nutrients (Ca, Mg, N, and P), other carbon fractions, and pigments (all R2 = 0.514–0.790; %RMSE = 12.8–19.6). Remaining elements were predicted poorly (R2 < 0.5, %RMSE > 20). For most chemical traits, pressed-leaf models performed better than fresh-leaf models, but worse than ground-leaf models. Pressed-leaf models were worse than fresh-leaf models for estimating LMA and LDMC, but better than ground-leaf models for LMA. Finally, in a subset of samples, we used partial least-squares discriminant analysis to classify specimens among 10 species with near-perfect accuracy (>97%) from pressed- and ground-leaf spectra, and slightly lower accuracy (>93%) from fresh-leaf spectra. These results show that applying spectroscopy to pressed leaves is a promising way to estimate leaf functional traits and identify species without destructive analysis. Pressed-leaf spectra might combine advantages of fresh and ground leaves: like fresh leaves, they retain some of the spectral expression of leaf structure; but like ground leaves, they circumvent the masking effect of water absorption. Our study has far-reaching implications for capturing the wide range of functional and taxonomic information in the world’s preserved plant collections.more » « less
-
This data set encompasses leaf area and dry weights for collected freshly shot leaves (early August) and fallen leaves (entire leaf fall period) along the elevation gradient of 14 sites used for the nitrogen oligotrophication study at Hubbard Brook Experimental Forest. This data will be used to calculate nutrient resorption along the elevation gradient for sugar maple (collection years: 2020-2022) and American beech (2021-2022). These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.more » « less
An official website of the United States government

