skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 1, 2025

Title: Rapid estimates of leaf litter chemistry using reflectance spectroscopy
Measuring the chemical traits of leaf litter is important for understanding plants’ influence on nutrient cycles, including through nutrient resorption and litter decomposition, but conventional leaf trait measurements are often destructive and labor-intensive. Here, we develop and evaluate the performance of partial least-squares regression models that use reflectance spectra of intact or ground leaves to estimate leaf litter traits, including carbon and nitrogen concentration, carbon fractions, and leaf mass per area (LMA). Our analyses included more than 300 samples of senesced foliage from 11 species of temperate trees, including both needleleaf and broadleaf species. Across all samples, we could predict each trait with moderate-to-high accuracy from both intact-leaf litter spectra (validation R2 = 0.543–0.941; %root mean squared error (RMSE) = 7.49–18.5) and ground-leaf litter spectra (validation R2 = 0.491–0.946; %RMSE = 7.00–19.5). Notably, intact-leaf spectra yielded better predictions of LMA. Our results support the feasibility of building models to estimate multiple chemical traits from leaf litter of a range of species. In particular, intact-leaf spectral models allow non-destructive trait estimation in a matter of seconds, which could enable researchers to measure the same leaves over time in studies of nutrient resorption.  more » « less
Award ID(s):
1831944
PAR ID:
10554527
Author(s) / Creator(s):
; ;
Publisher / Repository:
Canadian Science Publishing
Date Published:
Journal Name:
Canadian Journal of Forest Research
Volume:
54
Issue:
9
ISSN:
0045-5067
Page Range / eLocation ID:
978 to 991
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. More than ever, ecologists seek to employ herbarium collections to estimate plant functional traits from the past and across biomes. However, many trait measurements are destructive, which may preclude their use on valuable specimens. Researchers increasingly use reflectance spectroscopy to estimate traits from fresh or ground leaves, and to delimit or identify taxa. Here, we extend this body of work to non-destructive measurements on pressed, intact leaves, like those in herbarium collections. Using 618 samples from 68 species, we used partial least-squares regression to build models linking pressed-leaf reflectance spectra to a broad suite of traits, including leaf mass per area (LMA), leaf dry matter content (LDMC), equivalent water thickness, carbon fractions, pigments, and twelve elements. We compared these models to those trained on fresh- or ground-leaf spectra of the same samples. The traits our pressed-leaf models could estimate best were LMA (R2 = 0.932; %RMSE = 6.56), C (R2 = 0.855; %RMSE = 9.03), and cellulose (R2 = 0.803; %RMSE = 12.2), followed by water-related traits, certain nutrients (Ca, Mg, N, and P), other carbon fractions, and pigments (all R2 = 0.514–0.790; %RMSE = 12.8–19.6). Remaining elements were predicted poorly (R2 < 0.5, %RMSE > 20). For most chemical traits, pressed-leaf models performed better than fresh-leaf models, but worse than ground-leaf models. Pressed-leaf models were worse than fresh-leaf models for estimating LMA and LDMC, but better than ground-leaf models for LMA. Finally, in a subset of samples, we used partial least-squares discriminant analysis to classify specimens among 10 species with near-perfect accuracy (>97%) from pressed- and ground-leaf spectra, and slightly lower accuracy (>93%) from fresh-leaf spectra. These results show that applying spectroscopy to pressed leaves is a promising way to estimate leaf functional traits and identify species without destructive analysis. Pressed-leaf spectra might combine advantages of fresh and ground leaves: like fresh leaves, they retain some of the spectral expression of leaf structure; but like ground leaves, they circumvent the masking effect of water absorption. Our study has far-reaching implications for capturing the wide range of functional and taxonomic information in the world’s preserved plant collections. 
    more » « less
  2. Summary Leaf mass per area (LMA) is a key plant trait, reflecting tradeoffs between leaf photosynthetic function, longevity, and structural investment. Capturing spatial and temporal variability in LMA has been a long‐standing goal of ecological research and is an essential component for advancing Earth system models. Despite the substantial variation in LMA within and across Earth's biomes, an efficient, globally generalizable approach to predict LMA is still lacking.We explored the capacity to predict LMA from leaf spectra across much of the global LMA trait space, with values ranging from 17 to 393 g m−2. Our dataset contained leaves from a wide range of biomes from the high Arctic to the tropics, included broad‐ and needleleaf species, and upper‐ and lower‐canopy (i.e. sun and shade) growth environments.Here we demonstrate the capacity to rapidly estimate LMA using only spectral measurements across a wide range of species, leaf age and canopy position from diverse biomes. Our model captures LMA variability with high accuracy and low error (R2 = 0.89; root mean square error (RMSE) = 15.45 g m−2).Our finding highlights the fact that the leaf economics spectrum is mirrored by the leaf optical spectrum, paving the way for this technology to predict the diversity of LMA in ecosystems across global biomes. 
    more » « less
  3. Cavaleri, Molly (Ed.)
    Abstract Leaf trait variation enables plants to utilize large gradients of light availability that exist across canopies of high leaf area index (LAI), allowing for greater net carbon gain while reducing light availability for understory competitors. While these canopy dynamics are well understood in forest ecosystems, studies of canopy structure of woody shrubs in grasslands are lacking. To evaluate the investment strategy used by these shrubs, we investigated the vertical distribution of leaf traits and physiology across canopies of Cornus drummondii, the predominant woody encroaching shrub in the Kansas tallgrass prairie. We also examined the impact of disturbance by browsing and grazing on these factors. Our results reveal that leaf mass per area (LMA) and leaf nitrogen per area (Na) varied approximately threefold across canopies of C. drummondii, resulting in major differences in the physiological functioning of leaves. High LMA leaves had high photosynthetic capacity, while low LMA leaves had a novel strategy for maintaining light compensation points below ambient light levels. The vertical allocation of leaf traits in C. drummondii canopies was also modified in response to browsing, which increased light availability at deeper canopy depths. As a result, LMA and Na increased at lower canopy depths, leading to a greater photosynthetic capacity deeper in browsed canopies compared to control canopies. This response, along with increased light availability, facilitated greater photosynthesis and resource-use efficiency deeper in browsed canopies compared to control canopies. Our results illustrate how C. drummondii facilitates high LAI canopies and a compensatory growth response to browsing—both of which are key factors contributing to the success of C. drummondii and other species responsible for grassland woody encroachment. 
    more » « less
  4. Summary Large intraspecific functional trait variation strongly impacts many aspects of communities and ecosystems, and is the medium upon which evolution works. Yet intraspecific trait variation is inconsistent and hard to predict across traits, species and locations.We measured within‐species variation in leaf mass per area (LMA), leaf dry matter content (LDMC), branch wood density (WD), and allocation to stem area vs leaf area in branches (branch Huber value (HV)) across the aridity range of seven Australian eucalypts and a co‐occurringAcaciaspecies to explore how traits and their variances change with aridity.Within species, we found consistent increases in LMA, LDMC and WD and HV with increasing aridity, resulting in consistent trait coordination across leaves and branches. However, this coordination only emerged across sites with large climate differences. Unlike trait means, patterns of trait variance with aridity were mixed across populations and species. Only LDMC showed constrained trait variation in more xeric species and drier populations that could indicate limits to plasticity or heritable trait variation.Our results highlight that climate can drive consistent within‐species trait patterns, but that patterns might often be obscured by the complex nature of morphological traits, sampling incomplete species ranges or sampling confounded stress gradients. 
    more » « less
  5. Abstract Temperate deciduous forests by definition include a large proportion of woody species that shed their leaves each autumn and are completely leafless during winter months. Leaf senescence in deciduous trees is an active, complex process typically involving the physiological formation of an abscission layer causing the petiole to mechanically detach from the branch. However, several deciduous species retain all or some senesced leaves on branches through much of winter, a phenomenon called leaf marcescence. Marcescence has long fascinated botanists, including Pehr Kalm as early as 1749. Yet, surprisingly little research has been done to date. Here, we review and explore patterns and mechanisms of leaf marcescence in temperate forests, bringing together six nonmutually exclusive but separately proposed hypotheses: (1) Marcescence has no adaptive function but rather an evolutionary byproduct; (2) Marcescent leaves deter winter browsing herbivores; (3) Leaf retention through winter improves nutrient resorption during autumn senescence; (4) Prolonged leaf shedding into spring minimizes nutrient leaching and promotes decomposition; (5) Marcescent leaves protect overwintering buds from frost or desiccation; and (6) Marcescent canopies provide winter cover for animals (including insects, birds, bats), thereby affecting plant nutrient availability via excrement. No hypothesis has complete support and few tests of multiple hypotheses have been done. It is likely that any adaptive value of marcescence is species and context dependent. Despite increased interest in plant phenology and prevalence of this trait, much remains to be understood on the physiology, evolution, function, and ecological implications of leaf marcescence. 
    more » « less