skip to main content


Title: Azimuthal Anisotropy of the North American Upper Mantle Based on Full Waveform Inversion
Abstract

A new azimuthal anisotropy model for the North American and Caribbean Plates, namely,, is constructed based on full waveform inversion and records from the USArray and other temporary/permanent networks deployed in the study region. A total of 180 earthquakes and 4,516 seismographic stations are employed in the inversion to simultaneously constrain radially and azimuthally anisotropic model parameters:,,, and, within the crust and mantle. Thirty‐two preconditioned conjugate gradient iterations have been utilized to minimize frequency‐dependent phase discrepancies between observed and predicted seismograms for three‐component short‐period (15–40 s) body waves and long‐period (25–100 s) surface waves. Modelexhibits complicated variations in anisotropic fabrics underneath the western and eastern United States, especially at depths shallower than 100 km. For instance, the fast axis orientations in modelsuggest the presence of trench‐perpendicular mantle flows underneath the Cascadia Subduction Zone and also follow the strikes of the Snake River Plain, the Ouachita Orogenic Front, and the Grenville and Appalachian Orogenic Belts. The amplitudes of azimuthal anisotropy reduce to around 1% at depths greater than 200 km, and the orientations are subparallel to the global plate motion directions to the east of the Rocky Mountain, except for large discrepancies in central and eastern Canada. At a depth of 700 km, the fast axes change along the trajectory of the Farallon slab underneath the Great Lakes region and Gulf of Mexico, which might indicate the development of 2‐D poloidal‐mode mantle flows perpendicular to the strike of the sinking slab within the uppermost lower mantle. Comparisons between modelwith a western U.S. model from ambient noise tomography and SKS splitting measurements demonstrate a relatively good agreement for the fast axis orientations, considering the usage of different data sets and imaging techniques. However, the absolute magnitude of azimuthal anisotropy in modelmight be underestimated, especially at greater depths, given the poor agreement on the amplitudes of predicted and observed SKS splitting times. At the current stage, the agreement among different azimuthal anisotropy models at global and continental scales is still poor even for the United States with a dense station coverage.

 
more » « less
Award ID(s):
1924282
NSF-PAR ID:
10373391
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
125
Issue:
2
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Purpose

    Recent observations of several preferred orientations of diffusion in deep white matter may indicate either (a) that axons in different directions are independently bundled in thick sheets and function noninteractively, or more interestingly, (b) that the axons are closely interwoven and would exhibit branching and sharp turns. This study aims to investigate whether the dependence of dMRI Q‐ball signal on the interpulse timecan decode the smaller‐than‐voxel‐size brain structure, in particular, to distinguish scenarios (a) and (b).

    Methods

    High‐resolution Q‐ball images of a healthy brain taken with s/mm2for 3 different values ofwere analyzed. The exchange of water molecules between crossing fibers was characterized by the fourth Fourier coefficientof the signal profile in the plane of crossing. To interpret the empirical results, a model consisting of differently oriented parallel sheets of cylinders was developed. Diffusion of water molecules inside and outside cylinders was simulated by the Monte Carlo method.

    Results

    Simulations predict that, agreeing with the empirical results, must increase withfor largeb‐values, but may peak at a typicalthat depends on the thickness of the cylinder sheets for intermediateb‐values. Thus, the thickness of axon layers in voxels with 2 predominant orientations can be detected from empiricaltaken at smallerb‐values.

    Conclusion

    Based on the simulation results, recommendations are made on how to design a dMRI experiment with optimalb‐value and range ofin order to measure the thickness of axon sheets in the white matter, hence to distinguish (a) and (b).

     
    more » « less
  2. Abstract

    Debate continues on the amount and distribution of radioactive heat producing elements (i.e., U, Th, and K) in the Earth, with estimates for mantle heat production varying by an order of magnitude. Constraints on the bulk‐silicate Earth's (BSE) radiogenic power also places constraints on overall BSE composition. Geoneutrino detection is a direct measure of the Earth's decay rate of Th and U. The geoneutrino signal has contributions from the local (40%) and global (35%) continental lithosphere and the underlying inaccessible mantle (25%). Geophysical models are combined with geochemical data sets to predict the geoneutrino signal at current and future geoneutrino detectors. We propagated uncertainties, both chemical and physical, through Monte Carlo methods. Estimated total signal uncertainties are on the order of20%, proportionally with geophysical and geochemical inputs contributing30% and70%, respectively. We find that estimated signals, calculated using CRUST2.0, CRUST1.0, and LITHO1.0, are within physical uncertainty of each other, suggesting that the choice of underlying geophysical model will not change results significantly, but will shift the central value by up to15%. Similarly, we see no significant difference between calculated layer abundances and bulk crustal heat production when using these geophysical models. The bulk crustal heat production is calculated as 7  2 TW, which includes an increase of 1 TW in uncertainty relative to previous studies. Combination of our predicted lithospheric signal with measured signals yield an estimated BSE heat production of 21.5  10.4 TW. Future improvements, including uncertainty attribution and near‐field modeling, are discussed.

     
    more » « less
  3. Abstract

    We present a statistical investigation of the effects of interplanetary magnetic field (IMF) on hemispheric asymmetry in auroral currents. Nearly 6 years of magnetic field measurements from Swarm A and C satellites are analyzed. Bootstrap resampling is used to remove the difference in the number of samples and IMF conditions between the local seasons and the hemispheres. Currents are stronger in Northern Hemisphere (NH) than Southern Hemisphere (SH) for IMF Bin NH (Bin SH) in most local seasons under both signs of IMF B. For Bin NH (Bin SH), the hemispheric difference in currents is small except in local winter when currents in NH are stronger than in SH. During Band Bin NH (Band Bin SH), the largest hemispheric asymmetry occurs in local winter and autumn, when the NH/SH ratio of field aligned current (FAC) is 1.180.09 in winter and 1.170.09 in autumn. During Band Bin NH (Band Bin SH), the largest asymmetry is observed in local autumn with NH/SH ratio of 1.160.07 for FAC. We also find an explicit Beffect on auroral currents in a given hemisphere: on average Bin NH and Bin SH causes larger currents than vice versa. The explicit Beffect on divergence‐free current during IMF Bis in very good agreement with the Beffect on the cross polar cap potential from the Super Dual Auroral Radar Network dynamic model except at SH equinox and NH summer.

     
    more » « less
  4. Abstract

    The apparent end of the internally generated Martian magnetic field at 3.6–4.1 Ga is a key event in Martian history and has been linked to insufficient core cooling. We investigate the thermal and magnetic evolution of the Martian core and mantle using parameterized models and considered three improvements on previous studies. First, our models account for thermal stratification in the core. Second, the models are constrained by estimates for the present‐day areotherm. Third, we consider core thermal conductivity,, values in the range 5–40 Was suggested by recent experiments on iron alloys at Mars core conditions. The majority of our models indicate that the core of Mars is fully conductive at present with core temperatures greater than 1940 K. All of our models are consistent with the range ofW. Models with an activation volume of 6 (0)require a mantle reference viscosity of Pa s.

     
    more » « less
  5. Abstract

    The potential for molecular hydrogen () generated via serpentinization to fuel subsurface microbial ecosystems independent from photosynthesis has prompted biogeochemical investigations of serpentinization‐influenced fluids. However, investigations typically sample via surface seeps or open‐borehole pumping, which can mix chemically distinct waters from different depths. Depth‐indiscriminate sampling methods could thus hinder understanding of the spatial controls on nutrient availability for microbial life. To resolve distinct groundwaters in a low‐temperature serpentinizing environment, we deployed packers (tools that seal against borehole walls during pumping) in two‐deep, peridotite‐hosted wells in the Samail Ophiolite, Oman. Isolation and pumping of discrete intervals as deep astobelow ground level revealed multiple aquifers that ranged in pH from 8 to 11. Chemical analyses and 16S rRNA gene sequencing of deep, highly reactedgroundwaters bearing up to,methane () andsulfate () revealed an ecosystem dominated by Bacteria affiliated with the class Thermodesulfovibrionia, a group of chemolithoheterotrophs supported byoxidation coupled toreduction. In shallower, oxidizedgroundwaters, aerobic and denitrifying heterotrophs were relatively more abundant. Highandof(up toand, respectively) indicated microbialoxidation, particularly inwaters with evidence of mixing withwaters. This study demonstrates the power of spatially resolving groundwaters to probe their distinct geochemical conditions and chemosynthetic communities. Such information will help improve predictions of where microbial activity in fractured rock ecosystems might occur, including beyond Earth.

     
    more » « less