skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Predictive multi-watershed flood monitoring using deep learning on integrated physical and social sensors data
This paper presents a deep learning model based on the integration of physical and social sensors data for predictive watershed flood monitoring. The data from flood sensors and 3-1-1 reports data are mapped and fused through a multivariate time series approach. This data format is able to increase the data availability (partially due to sparsely installed physical sensors and fewer reported flood incidents in less urbanized areas) and capture both spatial and temporal interactions between different watersheds and historical events. We use Harris County, TX as the study site and obtained seven historical flood events data for training, validating, and testing the flood prediction model. The model predicts the flood probability of each watershed in the next 24 hours. By comparing the flood prediction performance of three different datasets (i.e., flood sensor only, 3-1-1 reports only, and integrated dataset), we conclude that the physical-social data integrated approach can better predict the flood with an accuracy of 0.825, area under the receiver operating characteristics curve (AURC) of 0.902, area under the precision-recall curve (AUPRC) of 0.883, area under the F-measure curve (AUFC) of 0.762, and Max. F-measure of 0.788.  more » « less
Award ID(s):
1832662
PAR ID:
10373445
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Environment and Planning B: Urban Analytics and City Science
Volume:
49
Issue:
7
ISSN:
2399-8083
Format(s):
Medium: X Size: p. 1838-1856
Size(s):
p. 1838-1856
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This paper presents a Bayesian network model to assess the vulnerability of the flood control infrastructure and to simulate failure cascade based on the topological structure of flood control networks along with hydrological information gathered from sensors. Two measures are proposed to characterize the flood control network vulnerability and failure cascade: (a) node failure probability (NFP), which determines the failure likelihood of each network component under each scenario of rainfall event, and (b) failure cascade susceptibility, which captures the susceptibility of a network component to failure due to failure of other links. The proposed model was tested in both single watershed and multiple watershed scenarios in Harris County, Texas using historical data from three different flooding events, including Hurricane Harvey in 2017. The proposed model was able to identify the most vulnerable flood control network segments prone to flooding in the face of extreme rainfall. The framework and results furnish a new tool and insights to help decision‐makers to prioritize infrastructure enhancement investments and actions. The proposed Bayesian network modeling framework also enables simulation of failure cascades in flood control infrastructures, and thus could be used for scenario planning as well as near‐real‐time inundation forecasting to inform emergency response planning and operation, and hence improve the flood resilience of urban areas. 
    more » « less
  2. Heavy rainfall leads to severe flooding problems with catastrophic socio-economic impacts worldwide. Hydrologic forecasting models have been applied to provide alerts of extreme flood events and reduce damage, yet they are still subject to many uncertainties due to the complexity of hydrologic processes and errors in forecasted timing and intensity of the floods. This study demonstrates the efficacy of using eXtreme Gradient Boosting (XGBoost) as a state-of-the-art machine learning (ML) model to forecast gauge stage levels at a 5-min interval with various look-out time windows. A flood alert system (FAS) built upon the XGBoost models is evaluated by two historical flooding events for a flood-prone watershed in Houston, Texas. The predicted stage values from the FAS are compared with observed values with demonstrating good performance by statistical metrics (RMSE and KGE). This study further compares the performance from two scenarios with different input data settings of the FAS: (1) using the data from the gauges within the study area only and (2) including the data from additional gauges outside of the study area. The results suggest that models that use the gauge information within the study area only (Scenario 1) are sufficient and advantageous in terms of their accuracy in predicting the arrival times of the floods. One of the benefits of the FAS outlined in this study is that the XGBoost-based FAS can run in a continuous mode to automatically detect floods without requiring an external starting trigger to switch on as usually required by the conventional event-based FAS systems. This paper illustrates a data-driven FAS framework as a prototype that stakeholders can utilize solely based on their gauging information for local flood warning and mitigation practices. 
    more » « less
  3. Abstract Unprecedented floods from extreme rainfall events worldwide emphasize the need for flood inundation mapping for floodplain management and risk reduction. Access to flood inundation maps and risk evaluation tools remains challenging in most parts of the world, particularly in rural regions, leading to decreased flood resilience. The use of hydraulic and hydrodynamic models in rural areas has been hindered by excessive data and computational requirements. In this study, we mapped the flood inundation in Huron Creek watershed, Michigan, USA for an extreme rainfall event (1000-year return period) that occurred in 2018 (Father’s Day Flood) using the Height Above Nearest Drainage (HAND) model and a synthetic rating curve developed from LIDAR DEM. We compared the flood inundation extent and depth modeled by the HAND with flood inundation characteristics predicted by two hydrodynamic models, viz., HEC-RAS 2D and SMS-SRH 2D. The flood discharge of the event was simulated using the HEC-HMS hydrologic model. Results suggest that, in different channel segments, the HAND model produces different degrees of concurrence in both flood inundation extent and depth when compared to the hydrodynamic models. The differences in flood inundation characteristics produced by the HAND model are primarily due to the uncertainties associated with optimal parameter estimation of the synthetic rating curve. Analyzing the differences between the HAND and hydrodynamic models also highlights the significance of terrain characteristics in model predictions. Based on the comparable predictive capability of the HAND model to map flood inundation areas during extreme rainfall events, we demonstrate the suitability of the HAND-based approach for mitigating flood risk in data-scarce, rural regions. 
    more » « less
  4. null (Ed.)
    Flooding during extreme weather events damages critical infrastructure, property, and threatens lives. Hurricane María devastated Puerto Rico (PR) on 20 September 2017. Sixty-four deaths were directly attributable to the flooding. This paper describes the development of a hydrologic model using the Gridded Surface Subsurface Hydrologic Analysis (GSSHA), capable of simulating flood depth and extent for the Añasco coastal flood plain in Western PR. The purpose of the study was to develop a numerical model to simulate flooding from extreme weather events and to evaluate the impacts on critical infrastructure and communities; Hurricane María is used as a case study. GSSHA was calibrated for Irma, a Category 3 hurricane, which struck the northeastern corner of the island on 7 September 2017, two weeks before Hurricane María. The upper Añasco watershed was calibrated using United States Geological Survey (USGS) stream discharge data. The model was validated using a storm of similar magnitude on 11–13 December 2007. Owing to the damage sustained by PR’s WSR-88D weather radar during Hurricane María, rainfall was estimated in this study using the Weather Research Forecast (WRF) model. Flooding in the coastal floodplain during Hurricane María was simulated using three methods: (1) Use of observed discharge hydrograph from the upper watershed as an inflow boundary condition for the coastal floodplain area, along with the WRF rainfall in the coastal flood plain; (2) Use of WRF rainfall to simulate runoff in the upper watershed and coastal flood plain; and (3) Similar to approach (2), except the use of bias-corrected WRF rainfall. Flooding results were compared with forty-two values of flood depth obtained during face-to-face interviews with residents of the affected communities. Impacts on critical infrastructure (water, electric, and public schools) were evaluated, assuming any structure exposed to 20 cm or more of flooding would sustain damage. Calibration equations were also used to improve flood depth estimates. Our model included the influence of storm surge, which we found to have a minimal effect on flood depths within the study area. Water infrastructure was more severely impacted by flooding than electrical infrastructure. From these findings, we conclude that the model developed in this study can be used with sufficient accuracy to identify infrastructure affected by future flooding events. 
    more » « less
  5. The lack of community-relevant flood informational resources and tools often results in inadequate and divergent understandings of flood risk and can impede communities' ability to function cohesively in the face of increasing flood threats. The current study reports on a set of workshops that the authors conducted with various groups (citizens, city engineers and planners, realtors and builders, and media representatives) within a flood prone community to evaluate how novel hydroinformatic tools that include hydrodynamic modeling, geospatial visualization, and socioeconomic analysis can enhance understanding of flood risk and engagement in flood risk mitigation among diverse community members. The workshops were designed to help identify stakeholder preferences regarding key functionality needed for integrated hydroinformatic technologies and socioeconomic analyses for flood risk reduction. Workshop participants were asked to use and comment on examples of prototype flood risk informational tools, such as: (1) flood damage estimation tool, (2) drivability and emergency accessibility tool, and (3) community-scale social and economic metrics tool. Data gathered from workshops were analyzed using qualitative analysis based on a grounded-theory approach. Data were coded by hand based on themes identified by the research team and incorporated deviant case analysis to ensure minority opinions was represented. The study results are focused on the following main themes and how flood tools can address them: (1) improving the understanding of flood risk and engagement in flood risk mitigation, (2) reducing the gap between individual and community risk, (3) challenges in communicating flood risk information, (4) enhancing relevance to and engagement of the community, and (5) enabling actionable information. Our research demonstrates the need for community-anchored tools and technologies that can illustrate local context, include local historical and simulated events at multiple levels of community impact, enable analyses by flood professionals while also providing simplified tools of use by citizens, and allow individuals to expand their knowledge beyond their homes, businesses, and places of work. 
    more » « less