Abstract The very‐low frequency (VLF) and low frequency (LF) waves from ground transmitters propagate in the ionospheric waveguide, and a portion of their power leaks to the Earth's inner radiation belt and slot region where it can cause electron precipitation loss. Using Van Allen Probes observations, we perform a survey of the VLF and LF transmitter waves at frequencies from 14 to 200 kHz. The statistical electric and magnetic wave amplitudes and frequency spectra are obtained at 1 < L < 3. Based on a recent study on the propagation of VLF transmitter waves, we divide the total wave power into ducted and unducted portions, and model the wave normal angle of unducted waves with dependences onLshell, magnetic latitude, and wave frequency. At lower frequencies, the unducted waves are launched along the vertical direction and the wave normal angle increases during the propagation until reaching the Gendrin angle; at higher frequencies, the normal angle of unducted waves follows the variation of Gendrin angle. We calculate the bounce‐averaged pitch angle and momentum diffusion coefficients of electrons due to ducted and unducted VLF and LF waves. Unducted and ducted waves cause efficient pitch angle scattering atL = 1.5 and 2.5, respectively. Although the wave power from ground transmitters at frequencies higher than 30 kHz is low, these waves can cause the pitch angle scattering of lower energy (2–200 keV atL = 1.5) electrons, which cannot resonate with the VLF transmitter waves at frequencies below 30 kHz, lightning generated whistlers, or plasmaspheric hiss.
more »
« less
Inner Belt Wisp Precipitation Measured by ELFIN: Regimes of Energetic Electron Scattering by VLF Transmitter Waves
Abstract Man‐made very low frequency (VLF) transmitter waves play a critical role in energetic electron scattering and precipitation from the inner radiation belt, a type of which is called wisp precipitation. Wisps exhibit dispersive energy‐versus‐Lspectra due to the evolution of electron cyclotron resonance conditions with near‐monochromatic VLF transmitter waves. Here, we report on such observations of inner belt wisp precipitation events with full pitch angle resolution in the energy range of 50 to ∼500 keV as measured by Electron Loss and Fields Investigation (ELFIN) atL < ∼2 between March 2021 and April 2022. Statistical observations (82 events) reveal occasional (18 events) wisp precipitation events with local bounce‐loss‐cone electron flux enhancements, which provide new information compared with flux enhancements measured in previous studies only in the drift loss cone. Based on magnetic field and plasmaspheric density models, quasilinear theory, and detailed pitch angle distributions of wisps from ELFIN, we have estimated the wisp electron bounce‐averaged pitch angle diffusion coefficients to be of the order of 10−4to 10−2 s−1. These are several orders of magnitude larger than the diffusion rates calculated from models using global statistical averages of VLF transmitter wave power. When using our estimated diffusion coefficients to deduce the associated local transmitter wave amplitudes near the equator, based on quasilinear calculations from a transmitter‐induced electron diffusion model, we find these wave amplitudes to be >1 mV/m. Although probable overestimates, such inferred wave amplitudes exceed the theoretical threshold amplitude for nonlinear interactions, strongly suggesting that it is necessary to include nonlinear effects for an accurate evaluation of energetic electron scattering by transmitter waves.
more »
« less
- Award ID(s):
- 2019914
- PAR ID:
- 10390954
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 127
- Issue:
- 11
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Energetic (≳50 keV) electron precipitation from the magnetosphere to the ionosphere during substorms can be important for magnetosphere‐ionosphere coupling. Using conjugate observations between the THEMIS, ELFIN, and DMSP spacecraft during a substorm, we have analyzed the energetic electron precipitation, the magnetospheric injection, and the associated plasma waves to examine the role of waves in pitch‐angle scattering plasma sheet electrons into the loss cone. During the substorm expansion phase, ELFIN‐A observed 50–300 keV electron precipitation from the plasma sheet that was likely driven by wave‐particle interactions. The identification of the low‐altitude extent of the plasma sheet from ELFIN is aided by DMSP global auroral images. Combining quasi‐linear theory, numerical test particle simulations, and equatorial THEMIS measurements of particles and fields, we have evaluated the relative importance of kinetic Alfvén waves (KAWs) and whistler‐mode waves in driving the observed precipitation. We find that the KAW‐driven bounce‐averaged pitch‐angle diffusion coefficientsnear the edge of the loss cone are ∼10−6–10−5s−1for these energetic electrons. Thedue to parallel whistler‐mode waves, observed at THEMIS ∼10‐min after the ELFIN observations, are ∼10−8–10−6s−1. Thus, at least in this case, the observed KAWs dominate over the observed whistler‐mode waves in the scattering and precipitation of energetic plasma sheet electrons during the substorm injection.more » « less
-
Abstract Electromagnetic ion cyclotron (EMIC) waves can drive radiation belt depletion and Low‐Earth Orbit satellites can detect the resulting electron and proton precipitation. The ELFIN (Electron Losses and Fields InvestigatioN) CubeSats provide an excellent opportunity to study the properties of EMIC‐driven electron precipitation with much higher energy and pitch‐angle resolution than previously allowed. We collect EMIC‐driven electron precipitation events from ELFIN observations and use POES (Polar Orbiting Environmental Satellites) to search for 10s–100s keV proton precipitation nearby as a proxy of EMIC wave activity. Electron precipitation mainly occurs on localized radial scales (∼0.3 L), over 15–24 MLT and 5–8 L shells, stronger at ∼MeV energies and weaker down to ∼100–200 keV. Additionally, the observed loss cone pitch‐angle distribution agrees with quasilinear predictions at ≳250 keV (more filled loss cone with increasing energy), while additional mechanisms are needed to explain the observed low‐energy precipitation.more » « less
-
Abstract In the radiation belts, energetic and relativistic electron precipitation into the atmosphere is expected to be mainly controlled over the long term by quasilinear pitch‐angle scattering by whistler‐mode and electromagnetic ion cyclotron waves. Accordingly, statistical electron lifetimes have been derived from quasilinear diffusion theory on the basis of multi‐year wave statistics. However, the full consistency of such statistical quasilinear models of electron lifetimes with both measured electron lifetimes, spectra of trapped and precipitated electron fluxes, and wave‐driven diffusion rates inferred from electron flux measurements, has not yet been verified in detail. In the present study, we use data from Electron Loss and Fields Investigation (ELFIN) mission CubeSats, launched in September 2018 in low Earth orbit, to carry out such comparisons between quasi‐linear diffusion theory and observed electron flux variations. We show that statistical theoretical lifetime models are in reasonable agreement with electron pitch‐angle diffusion rates inferred from the precipitated to trapped 100 keV electron flux ratio measured by ELFIN after correction for atmospheric backscatter, as well as with timescales of trapped electron flux decay independently measured over several days by ELFIN. The present results demonstrate for the first time a broad consistency between timescales of trapped electron flux decay, the pitch‐angle distribution of precipitated electrons, and quasilinear models of wave‐driven electron loss, showing the reliability of such statistical electron lifetime models parameterized by geomagnetic activity for evaluating electron precipitation into the atmosphere during not too disturbed periods.more » « less
-
Abstract Electron cyclotron harmonic waves (ECH) play a key role in scattering and precipitation of plasma sheet electrons. Previous analysis on the resonant interaction between ECH waves and electrons assumed that these waves are generated by a loss cone distribution and propagate nearly perpendicular to the background magnetic field. Recent spacecraft observations, however, have demonstrated that such waves can also be generated by low energy electron beams and propagate at moderately oblique angles . To quantify the effects of this newly observed ECH wave mode on electron dynamics in Earth's magnetosphere, we use quasi‐linear theory to calculate the associated electron pitch angle diffusion coefficient. Utilizing THEMIS spacecraft measurements, we analyze in detail a few representative events of beam‐driven ECH waves in the plasma sheet and the outer radiation belt. Based on the observed wave properties and the hot plasma dispersion relation of these waves, we calculate their bounce‐averaged pitch angle, momentum and mixed diffusion coefficients. We find that these waves most efficiently scatter low‐energy electrons (10–500 eV) toward larger pitch angles, on time scales of to seconds. In contrast, loss‐cone‐driven ECH waves most efficiently scatter higher‐energy electrons (500 eV–5 keV) toward lower pitch‐angles. Importantly, beam‐driven ECH waves can effectively scatter ionospheric electron outflows out of the loss cone near the magnetic equator. As a result, these outflows become trapped in the magnetosphere, forming a near‐field‐aligned anisotropic electron population. Our work highlights the importance of ECH waves, particularly beam‐driven modes, in regulating magnetosphere‐ionosphere particle and energy coupling.more » « less
An official website of the United States government
