Abstract Lightning‐induced Electron Precipitation (LEP) is a known process of electron loss in the Earth's radiation belts. An LEP event progresses with Very Low Frequency (VLF) radio wave radiation from lightning, trans‐ionospheric propagation, and wave‐particle gyroresonance interaction with energetic radiation belt electrons. Pitch angle scattered electrons then precipitate onto the ionosphere, allowing detection using VLF remote sensing using high power transmitters. The relative importance of LEP events as a radiation belt electron lifetime driver has heretofore been unclear. We build off a massive database of LEP events observed within the continental US (CONUS) by a network of VLF receivers. For each observed LEP event, based on the characteristics of the ionospheric disturbance, we apply a suite of models to estimate the total number of precipitating electrons, which we can then sum up over all LEP events to quantify lightning's contribution within CONUS. We find that LEP events within CONUS appear to be capable of removing a substantial fraction (up to 0.1%–1%) of radiation belt electrons between 33 and 1,000 keV, and may have stronger contributions to radiation belt losses than earlier estimates.
more »
« less
Very-Low-Frequency transmitters bifurcate energetic electron belt in near-earth space
Abstract Very-Low-Frequency (VLF) transmitters operate worldwide mostly at frequencies of 10–30 kilohertz for submarine communications. While it has been of intense scientific interest and practical importance to understand whether VLF transmitters can affect the natural environment of charged energetic particles, for decades there remained little direct observational evidence that revealed the effects of these VLF transmitters in geospace. Here we report a radially bifurcated electron belt formation at energies of tens of kiloelectron volts (keV) at altitudes of ~0.8–1.5 Earth radii on timescales over 10 days. Using Fokker-Planck diffusion simulations, we provide quantitative evidence that VLF transmitter emissions that leak from the Earth-ionosphere waveguide are primarily responsible for bifurcating the energetic electron belt, which typically exhibits a single-peak radial structure in near-Earth space. Since energetic electrons pose a potential danger to satellite operations, our findings demonstrate the feasibility of mitigation of natural particle radiation environment.
more »
« less
- Award ID(s):
- 1847818
- PAR ID:
- 10193948
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Man‐made very low frequency (VLF) transmitter waves play a critical role in energetic electron scattering and precipitation from the inner radiation belt, a type of which is called wisp precipitation. Wisps exhibit dispersive energy‐versus‐Lspectra due to the evolution of electron cyclotron resonance conditions with near‐monochromatic VLF transmitter waves. Here, we report on such observations of inner belt wisp precipitation events with full pitch angle resolution in the energy range of 50 to ∼500 keV as measured by Electron Loss and Fields Investigation (ELFIN) atL < ∼2 between March 2021 and April 2022. Statistical observations (82 events) reveal occasional (18 events) wisp precipitation events with local bounce‐loss‐cone electron flux enhancements, which provide new information compared with flux enhancements measured in previous studies only in the drift loss cone. Based on magnetic field and plasmaspheric density models, quasilinear theory, and detailed pitch angle distributions of wisps from ELFIN, we have estimated the wisp electron bounce‐averaged pitch angle diffusion coefficients to be of the order of 10−4to 10−2 s−1. These are several orders of magnitude larger than the diffusion rates calculated from models using global statistical averages of VLF transmitter wave power. When using our estimated diffusion coefficients to deduce the associated local transmitter wave amplitudes near the equator, based on quasilinear calculations from a transmitter‐induced electron diffusion model, we find these wave amplitudes to be >1 mV/m. Although probable overestimates, such inferred wave amplitudes exceed the theoretical threshold amplitude for nonlinear interactions, strongly suggesting that it is necessary to include nonlinear effects for an accurate evaluation of energetic electron scattering by transmitter waves.more » « less
-
Abstract We demonstrate a methodology for utilizing measurements from very low frequency (VLF, 3−30 kHz) transmitters and lightning emissions to produce 3D lower electron density maps, and apply it to multiple geophysical disturbances. The D‐region lower ionosphere (60−90 km) forms the upper boundary of the Earth‐ionosphere waveguide which allows VLF radio waves to propagate to global distances. Measurements of these signals have, in many prior studies, been used to infer path‐average electron density profiles within the D region. Historically, researchers have focused on either measurements of VLF transmitters or radio atmospherics (sferics) from lightning. In this work, we build on recently published methods for each and present a method to unify the two approaches via tomography. The output of the tomographic inversion produces maps of electron density over a large portion of the United States and Gulf of Mexico. To illustrate the benefits of this unified approach, daytime and nighttime maps are compared between a sferic‐only model and the new approach suggested here. We apply the model to characterize two geophysical disturbances: solar flares and lower ionospheric changes associated with thunderstorms.more » « less
-
Abstract Terrestrial Very‐Low‐Frequency (VLF) energy from both lightning discharges and radio transmitters has a role in affecting the energetic electrons in the Van Allen radiation belts, but quantification of these effects is particularly difficult, largely due to the collisional damping experienced in the highly variable electron density in the D‐ and E‐region ionosphere. The Faraday International Reference Ionosphere (FIRI) model was specifically developed by combining lower‐ionosphere chemistry modeling with in situ rocket measurements, and represents to date the most reliable source of electron density profiles for the lower ionosphere. As a full‐resolution empirical model, FIRI is not well suited to D‐ and E‐region ionosphere inversion, and its applicability in transionospheric VLF simulation and in remote sensing of the lower ionosphere is limited. Motivated by how subionospheric VLF remote sensing has been aided by the Wait and Spies (WS) profile (Wait & Spies, 1964), in this study, we parameterize the FIRI profiles and extend the WS profile to the E‐region ionosphere by introducing two new parameters: the knee altitudehkand the sharpness parameter for the E‐region ionosphereβE. Using this modified WS profile, we calculate the expected signals at different receiver locations from the NAA, NPM, and NWC transmitters under the full range of possible ionospheric conditions. We also describe and validate a method about how these results can be readily used to translate VLF measurements into estimates of the lower ionosphere electron density. Moreover, we use this method to evaluate the sensitivity of different ground receiver locations in lower‐ionosphere remote sensing.more » « less
-
Abstract The very‐low frequency (VLF) and low frequency (LF) waves from ground transmitters propagate in the ionospheric waveguide, and a portion of their power leaks to the Earth's inner radiation belt and slot region where it can cause electron precipitation loss. Using Van Allen Probes observations, we perform a survey of the VLF and LF transmitter waves at frequencies from 14 to 200 kHz. The statistical electric and magnetic wave amplitudes and frequency spectra are obtained at 1 < L < 3. Based on a recent study on the propagation of VLF transmitter waves, we divide the total wave power into ducted and unducted portions, and model the wave normal angle of unducted waves with dependences onLshell, magnetic latitude, and wave frequency. At lower frequencies, the unducted waves are launched along the vertical direction and the wave normal angle increases during the propagation until reaching the Gendrin angle; at higher frequencies, the normal angle of unducted waves follows the variation of Gendrin angle. We calculate the bounce‐averaged pitch angle and momentum diffusion coefficients of electrons due to ducted and unducted VLF and LF waves. Unducted and ducted waves cause efficient pitch angle scattering atL = 1.5 and 2.5, respectively. Although the wave power from ground transmitters at frequencies higher than 30 kHz is low, these waves can cause the pitch angle scattering of lower energy (2–200 keV atL = 1.5) electrons, which cannot resonate with the VLF transmitter waves at frequencies below 30 kHz, lightning generated whistlers, or plasmaspheric hiss.more » « less
An official website of the United States government
