skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Demonstration of Low Work Function Perovskite SrVO 3 Using Thermionic Electron Emission
Abstract Engineering a material's work function is of central importance for many technologies and in particular electron emitters used in high‐power vacuum electronics and thermionic energy converters. A low work function surface is typically achieved through unstable surface functional species, especially in high power thermionic electron emitter applications. Discovering and engineering new materials with intrinsic, stable low work functions obtainable without volatile surface species would mark a definitive advancement in the design of electron emitters. This work reports evidence for the existence of a low work function surface on a bulk, monolithic, electrically conductive perovskite oxide: SrVO3. After considering the patch field effect on the heterogeneous emitting surface of the bulk polycrystalline samples, this study suggests the presence of low work function (≈2 eV) emissive grains on SrVO3surface. Emission current densities of 10–100 mA cm–2at ≈1000 °C, comparable to commercial LaB6thermionic cathodes, indicative of an overall effective thermionic work function of 2.3–2.7 eV are obtained. This study demonstrates that perovskites like SrVO3may have intrinsically low work functions comparable to commercialized W‐based dispenser cathodes and suggests that, with further engineering, perovskites may represent a new class of low work function electron emitters.  more » « less
Award ID(s):
2011401
PAR ID:
10373581
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
32
Issue:
41
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sn‐based perovskites are promising Pb‐free photovoltaic materials with an ideal 1.3 eV bandgap. However, to date, Sn‐based thin film perovskite solar cells have yielded relatively low power conversion efficiencies (PCEs). This is traced to their poor photophysical properties (i.e., short diffusion lengths (<30 nm) and two orders of magnitude higher defect densities) than Pb‐based systems. Herein, it is revealed that melt‐synthesized cesium tin iodide (CsSnI3) ingots containing high‐quality large single crystal (SC) grains transcend these fundamental limitations. Through detailed optical spectroscopy, their inherently superior properties are uncovered, with bulk carrier lifetimes reaching 6.6 ns, doping concentrations of around 4.5 × 1017cm−3, and minority‐carrier diffusion lengths approaching 1 µm, as compared to their polycrystalline counterparts having ≈54 ps, ≈9.2 × 1018cm−3, and ≈16 nm, respectively. CsSnI3SCs also exhibit very low surface recombination velocity of ≈2 × 103cm s−1, similar to Pb‐based perovskites. Importantly, these key parameters are comparable to high‐performance p‐type photovoltaic materials (e.g., InP crystals). The findings predict a PCE of ≈23% for optimized CsSnI3SCs solar cells, highlighting their great potential. 
    more » « less
  2. Air‐stable p‐type SnF2:Cs2SnI6with a bandgap of 1.6 eV has been demonstrated as a promising material for Pb‐free halide perovskite solar cells. Crystalline Cs2SnI6phase is obtained with CsI, SnI2, and SnF2salts in gamma‐butyrolactone solvent, but not with dimethyl sulfoxide andN,N‐dimethylformamide solvents. Cs2SnI6is found to be stable for at least 1000 h at 100 °C when dark annealed in nitrogen atmosphere. In this study, Cs2SnI6has been used in a superstrate n–i–p planar device structure enabled by a spin‐coated absorber thickness of ≈2 μm on a chemical bath deposited Zn(O,S) electron transport layer. The best device power conversion efficiency reported here is 5.18% withVOCof 0.81 V, 9.28 mA cm−2JSC, and 68% fill factor. The dark saturation current and diode ideality factor are estimated as 1.5 × 10−3 mA cm−2and 2.18, respectively. The devices exhibit a highVOCdeficit and low short‐circuit current density due to high bulk and interface recombination. Device efficiency can be expected to increase with improvement in material and interface quality, charge transport, and device engineering. 
    more » « less
  3. Abstract Topological insulators and semimetals have been shown to possess intriguing thermoelectric properties promising for energy harvesting and cooling applications. However, thermoelectric transport associated with the Fermi arc topological surface states on topological Dirac semimetals remains less explored. This work systematically examines thermoelectric transport in a series of topological Dirac semimetal Cd3As2thin films grown by molecular beam epitaxy. Surprisingly, significantly enhanced Seebeck effect and anomalous Nernst effect are found at cryogenic temperatures when the Cd3As2layer is thin. In particular, a peak Seebeck coefficient of nearly 500 µV K−1and a corresponding thermoelectric power factor over 30 mW K−2 m−1are observed at 5 K in a 25‐nm‐thick sample. Combining angle‐dependent quantum oscillation analysis, magnetothermoelectric measurement, transport modeling, and first‐principles simulation, the contributions from bulk and surface conducting channels are isolated and the unusual thermoelectric properties are attributed to the topological surface states. The analysis showcases the rich thermoelectric transport physics in quantum‐confined topological Dirac semimetal thin films and suggests new routes to achieving high thermoelectric performance at cryogenic temperatures. 
    more » « less
  4. Abstract Lattice oxygen redox yields anomalous capacity and can significantly increase the energy density of layered Li‐rich transition metal oxide cathodes, garnering tremendous interest. However, the mechanism behind O redox in these cathode materials is still under debate, in part due to the challenges in directly observing O and following associated changes upon electrochemical cycling. Here, with17O NMR as a direct probe of O activities, it is demonstrated that stacking faults enhance O redox participation compared with Li2MnO3domains without stacking faults. This work is concluded by combining both ex situ and in situ17O NMR to investigate the evolution of O at 4i, 8j sites from monoclinicC2/mand 6c(1), 6c(2), 6c(3) sites from the stacking faults (P3112). These measurements are further corroborated and explained by first‐principles calculations finding a stabilization effect of stacking faults in delithiated Li2MnO3. In situ17O NMR tracks O activities with temporal resolution and provides a quantitative determination of reversible O redox versus irreversible processes that form short covalent OO bonds. This work provides valuable insights into the O redox reactions in Li‐excess layered cathodes, which may inspire new material design for cathodes with high specific capacity. 
    more » « less
  5. Abstract Discovery of new materials with enhanced optical properties in the visible and UV‐C range can impact applications in lasers, nonlinear optics, and quantum optics. Here, the optical floating zone growth of a family of rare earth borates,RBa3(B3O6)3(R= Nd, Sm, Tb, Dy, and Er), with promising linear and nonlinear optical (NLO) properties is reported. Although previously identified to be centrosymmetric, the X‐ray analysis combined with optical second harmonic generation (SHG) assigns the noncentrosymmetricPspace group to these crystals. Characterization of linear optical properties reveals a direct bandgap of ≈5.61–5.72 eV and strong photoluminescence in both the visible and mid‐IR regions. Anisotropic linear and nonlinear optical characterization reveals both Type‐I and Type‐II SHG phase matchability, with the highest effective phase‐matched SHG coefficient of 1.2 pm V−1at 800‐nm fundamental wavelength (for DyBa3(B3O6)3), comparable to β‐BaB2O4(phase‐matchedd22≈ 1.9 pm V−1). Laser‐induced surface damage threshold for these environmentally stable crystals is 650–900 GW cm−2, which is four to five times higher than that of β‐BaB2O4, thus providing an opportunity to pump with significantly higher power to generate about six to seven times stronger SHG light. Since the SHG arises from disorder on the Ba‐site, significantly larger SHG coefficients may be realized by “poling” the crystals to align the Ba displacements. These properties motivate further development of this crystal family for laser and wide bandgap NLO applications. 
    more » « less